A Fast Designed Thresholding Algorithm for Low-Rank Matrix Recovery with Application to Missing English Text Completion
Abstract
1. Introduction
2. Designed Thresholding Operator and AIMDT Algorithm
2.1. Designed Thresholding Operator
2.2. AIMDT Algorithm
Algorithm 1 AIMDT algorithm [14] |
|
3. Fast Adaptive Iterative Matrix Designed Thresholding Algorithm
Algorithm 2 FAIMDT algorithm |
|
4. Numerical Experiments
4.1. Random Low-Rank Matrix Completion
4.2. Missing English Text Completion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717–772. [Google Scholar] [CrossRef]
- Liu, Z.; Vandenberghe, L. Interior-point method for nuclear norm approximation with application to system identification. SIAM J. Matrix Anal. Appl. 2009, 31, 1235–1256. [Google Scholar] [CrossRef]
- Cao, F.; Cai, M.; Tan, Y. Image interpolation via low-rank matrix completion and recovery. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1261–1270. [Google Scholar]
- Xing, Z.; Zhou, J.; Ge, Z.; Huang, G.; Hu, M. Recovery of high order statistics of PSK signals based on low-rank matrix completion. IEEE Access 2023, 11, 12973–12986. [Google Scholar] [CrossRef]
- Chen, P.; Suter, D. Recovering the missing components in a large noisy low-rank matrix: Application to SFM. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1051–1063. [Google Scholar] [CrossRef] [PubMed]
- Tsakiris, M.C. Low-rank matrix completion theory via Plücker coordinates. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 10084–10099. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pu, W.; Zhou, R.; You, M.; Wang, W.; Yan, J. Efficient Position Determination Using Low-Rank Matrix Completion. In Proceedings of the 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Zhuhai, China, 22–24 November 2024. [Google Scholar]
- Sturm, J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 1999, 11, 625–653. [Google Scholar] [CrossRef]
- Tütüncü, R.H.; Toh, K.C.; Todd, M.J. Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 2003, 95, 189–217. [Google Scholar] [CrossRef]
- Toh, K.-C.; Yun, S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 2010, 6, 615–640. [Google Scholar]
- Cai, J.-F.; Candès, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Yang, J.; Yuan, X. Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 2013, 82, 301–329. [Google Scholar] [CrossRef]
- Daubechies, I.; Defrise, M.; Mol, C.D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 2004, 57, 1413–1457. [Google Scholar] [CrossRef]
- Cui, A.; He, H.; Yang, H. A designed thresholding operator for low-rank matrix completion. Mathematics 2024, 12, 1065. [Google Scholar] [CrossRef]
- Liang, J.; Luo, T.; Schonlieb, C.B. Improving “fast iterative shrinkage-thresholding algorithm”: Faster, smarter, and greedier. SIAM J. Sci. Comput. 2022, 44, A1069–A1091. [Google Scholar] [CrossRef]
- Ma, S.; Goldfarb, D.; Chen, L. Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. 2011, 128, 321–353. [Google Scholar] [CrossRef]
Problem | FAIMDT, | FAIMDT, | AIMDT, | AIMDT, | SVT Algorithm | |||||
---|---|---|---|---|---|---|---|---|---|---|
(, , ) | RE | Time | RE | Time | RE | Time | RE | Time | RE | Time |
(100, 10, 2.10) | 2.69 × 10−8 | 0.166 | 3.04 × 10−8 | 0.162 | 3.31 × 10−7 | 0.527 | 3.31 × 10−7 | 0.540 | 2.72 × 10−1 | 0.481 |
(200, 20, 2.10) | 5.32 × 10−8 | 0.558 | 5.46 × 10−8 | 0.565 | 2.39 × 10−7 | 1.612 | 2.40 × 10−7 | 1.631 | 2.23 × 10−1 | 2.203 |
(300, 30, 2.10) | 4.01 × 10−8 | 1.102 | 4.15 × 10−8 | 1.097 | 1.98 × 10−7 | 2.940 | 1.95 × 10−7 | 2.964 | 2.02 × 10−1 | 5.576 |
(400, 40, 2.10) | 2.72 × 10−7 | 2.299 | 2.77 × 10−8 | 2.189 | 2.23 × 10−7 | 5.989 | 2.27 × 10−7 | 6.065 | 2.10 × 10−1 | 10.594 |
(500, 50, 2.10) | 3.29 × 10−8 | 3.518 | 3.35 × 10−8 | 3.509 | 1.88 × 10−7 | 8.810 | 1.86 × 10−7 | 8.854 | 2.12 × 10−1 | 18.682 |
(600, 60, 2.10) | 3.12 × 10−8 | 5.577 | 3.17 × 10−8 | 4.577 | 1.79 × 10−7 | 11.733 | 1.85 × 10−7 | 11.907 | 2.10 × 10−1 | 24.072 |
(700, 70, 2.10) | 3.13 × 10−8 | 7.296 | 3.17 × 10−8 | 7.201 | 1.88 × 10−7 | 19.089 | 1.87 × 10−7 | 20.040 | 1.92 × 10−1 | 45.720 |
(800, 80, 2.10) | 2.94 × 10−8 | 9.945 | 2.97 × 10−8 | 9.929 | 1.75 × 10−7 | 26.476 | 1.80 × 10−7 | 29.084 | 1.90 × 10−1 | 65.804 |
(900, 90, 2.10) | 3.00 × 10−8 | 13.488 | 2.45 × 10−8 | 13.267 | 1.73 × 10−7 | 36.042 | 1.77 × 10−7 | 36.812 | 1.86 × 10−1 | 87.852 |
(1000, 100, 2.10) | 2.67 × 10−8 | 17.578 | 2.69 × 10−8 | 18.183 | 1.72 × 10−7 | 49.834 | 1.75 × 10−7 | 50.473 | 1.93 × 10−1 | 110.415 |
(1100, 110, 2.10) | 2.52 × 10−8 | 23.156 | 2.54 × 10−8 | 28.470 | 1.71 × 10−7 | 60.586 | 1.74 × 10−7 | 66.294 | 1.93 × 10−1 | 143.420 |
Problem | FAIMDT, | FAIMDT, | AIMDT, | AIMDT, | SVT Algorithm | |||||
---|---|---|---|---|---|---|---|---|---|---|
(, , ) | RE | Time | RE | Time | RE | Time | RE | Time | RE | Time |
(100, 10, 2.10) | 2.90 × 10−3 | 0.166 | 2.90 × 10−3 | 0.162 | 2.90 × 10−3 | 0.523 | 2.90 × 10−3 | 0.504 | 3.23 × 10−1 | 0.444 |
(200, 20, 2.10) | 2.00 × 10−3 | 0.565 | 2.00 × 10−3 | 0.565 | 2.00 × 10−3 | 1.636 | 2.00 × 10−3 | 1.642 | 2.65 × 10−1 | 2.067 |
(300, 30, 2.10) | 1.60 × 10−3 | 1.205 | 1.60 × 10−3 | 1.227 | 1.60 × 10−3 | 3.344 | 1.60 × 10−3 | 3.364 | 2.43 × 10−1 | 4.889 |
(400, 40, 2.10) | 1.40 × 10−3 | 2.503 | 1.40 × 10−3 | 2.664 | 1.40 × 10−3 | 5.942 | 1.40 × 10−3 | 6.066 | 2.01 × 10−1 | 11.438 |
(500, 50, 2.10) | 1.40 × 10−3 | 3.338 | 1.40 × 10−3 | 3.357 | 1.40 × 10−3 | 8.654 | 1.40 × 10−3 | 8.813 | 1.93 × 10−1 | 19.293 |
(600, 60, 2.10) | 1.10 × 10−3 | 5.165 | 1.10 × 10−3 | 5.178 | 1.10 × 10−3 | 13.323 | 1.10 × 10−3 | 13.903 | 1.93 × 10−1 | 30.694 |
(700, 70, 2.10) | 1.00 × 10−3 | 7.567 | 1.00 × 10−3 | 7.223 | 1.00 × 10−3 | 18.888 | 1.00 × 10−3 | 20.285 | 2.00 × 10−1 | 41.304 |
(800, 80, 2.10) | 9.61 × 10−4 | 9.968 | 9.61 × 10−3 | 10.121 | 9.61 × 10−3 | 26.992 | 9.61 × 10−3 | 27.568 | 2.00 × 10−1 | 57.394 |
(900, 90, 2.10) | 8.96 × 10−4 | 13.835 | 8.96 × 10−4 | 13.417 | 8.96 × 10−4 | 36.408 | 8.96 × 10−4 | 36.649 | 1.88 × 10−1 | 84.413 |
(1000, 100, 2.10) | 8.61 × 10−4 | 18.274 | 8.61 × 10−4 | 18.627 | 8.61 × 10−4 | 48.808 | 8.61 × 10−4 | 49.776 | 1.78 × 10−1 | 117.498 |
(1100, 110, 2.10) | 8.00 × 10−4 | 21.487 | 8.00 × 10−4 | 22.563 | 8.00 × 10−4 | 57.949 | 8.00 × 10−4 | 54.021 | 8.14 × 10−2 | 336.561 |
FAIMDT, | FAIMDT, | AIMDT, | AIMDT, | SVT Algorithm | |||||
---|---|---|---|---|---|---|---|---|---|
RE | Time | RE | Time | RE | Time | RE | Time | RE | Time |
8.60 × 10−3 | 37.060 | 3.07 × 10−2 | 11.926 | 8.70 × 10−3 | 819.792 | 3.07 × 10−2 | 127.622 | 3.96 × 10−2 | 17.247 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Cui, A.; Yang, H. A Fast Designed Thresholding Algorithm for Low-Rank Matrix Recovery with Application to Missing English Text Completion. Mathematics 2025, 13, 3135. https://doi.org/10.3390/math13193135
He H, Cui A, Yang H. A Fast Designed Thresholding Algorithm for Low-Rank Matrix Recovery with Application to Missing English Text Completion. Mathematics. 2025; 13(19):3135. https://doi.org/10.3390/math13193135
Chicago/Turabian StyleHe, Haizhen, Angang Cui, and Hong Yang. 2025. "A Fast Designed Thresholding Algorithm for Low-Rank Matrix Recovery with Application to Missing English Text Completion" Mathematics 13, no. 19: 3135. https://doi.org/10.3390/math13193135
APA StyleHe, H., Cui, A., & Yang, H. (2025). A Fast Designed Thresholding Algorithm for Low-Rank Matrix Recovery with Application to Missing English Text Completion. Mathematics, 13(19), 3135. https://doi.org/10.3390/math13193135