Author Contributions
Conceptualization, H.C., B.C., and F.C.-C.; methodology, B.C., F.C.-C., and G.A.; software, H.C., G.G., F.S.-P., and F.C.-C.; validation, B.C., R.S., F.C.-C., and G.A.; formal analysis, B.C., R.S., and H.C.; investigation, B.C. and G.A.; resources, H.C., F.C.-C., and G.A.; writing—original draft, H.C., F.S.-P., and G.A.; writing—review and editing, B.C., R.S., G.A., G.G., and F.C.-C.; supervision, B.C., R.S., and F.C.-C.; funding acquisition, B.C. All authors have read and agreed to the published version of the manuscript.
Figure 1.
Statistical decision flow used for test selection.
Figure 1.
Statistical decision flow used for test selection.
Figure 2.
RPD heatmap for TF–binarization combinations; lighter cells indicate lower RPD.
Figure 2.
RPD heatmap for TF–binarization combinations; lighter cells indicate lower RPD.
Figure 3.
RPD heatmap for TF–binarization combinations; lighter cells indicate lower RPD.
Figure 3.
RPD heatmap for TF–binarization combinations; lighter cells indicate lower RPD.
Figure 4.
RPD heatmap for TF–binarization combinations; lighter cells indicate lower RPD.
Figure 4.
RPD heatmap for TF–binarization combinations; lighter cells indicate lower RPD.
Figure 5.
RPD heatmap for TF–binarization combinations; lighter cells indicate lower RPD.
Figure 5.
RPD heatmap for TF–binarization combinations; lighter cells indicate lower RPD.
Figure 6.
Boxplots RPD distribution for the elitist rule with the V3 transfer function (scpnrh2–scpnrh5). The blue box shows the interquartile range, the black line the median, the green whiskers the 1.5×IQR limits, and the white circles the outliers.
Figure 6.
Boxplots RPD distribution for the elitist rule with the V3 transfer function (scpnrh2–scpnrh5). The blue box shows the interquartile range, the black line the median, the green whiskers the 1.5×IQR limits, and the white circles the outliers.
Figure 7.
BAOA on (V3–ELIT): Time per iteration, XPL–XPT balance (averages), and convergence curve indicating the point from which the fitness no longer improves.
Figure 7.
BAOA on (V3–ELIT): Time per iteration, XPL–XPT balance (averages), and convergence curve indicating the point from which the fitness no longer improves.
Figure 8.
BAOA on (V3–ELIT): Time per iteration, XPL–XPT balance (averages), and convergence curve indicating the point from which the fitness no longer improves.
Figure 8.
BAOA on (V3–ELIT): Time per iteration, XPL–XPT balance (averages), and convergence curve indicating the point from which the fitness no longer improves.
Figure 9.
Barchart comparison of the metaheuristics based on three performance indicators.
Figure 9.
Barchart comparison of the metaheuristics based on three performance indicators.
Figure 10.
Summary of iteration times of AOA V3-ELIT across different SCP instances. Two stages can be observed: an initial overhead, and a stabilization phase with nearly constant time.
Figure 10.
Summary of iteration times of AOA V3-ELIT across different SCP instances. Two stages can be observed: an initial overhead, and a stabilization phase with nearly constant time.
Figure 11.
Iteration time per iteration for instance SCPd1 under the AOA V3-ELIT configuration. The curve shows two phases: an initial overhead where computation time increases sharply, followed by a stabilization phase where the iteration time remains nearly constant around 18–19 s.
Figure 11.
Iteration time per iteration for instance SCPd1 under the AOA V3-ELIT configuration. The curve shows two phases: an initial overhead where computation time increases sharply, followed by a stabilization phase where the iteration time remains nearly constant around 18–19 s.
Figure 12.
Exploration (XPL%) and exploitation (XPT%) dynamics for BAOA V3-ELIT in the scpd1 instance. The curves show a sharp decline in exploration during the first iterations, stabilizing below 2.12%, while exploitation dominates above 97.88%.
Figure 12.
Exploration (XPL%) and exploitation (XPT%) dynamics for BAOA V3-ELIT in the scpd1 instance. The curves show a sharp decline in exploration during the first iterations, stabilizing below 2.12%, while exploitation dominates above 97.88%.
Figure 13.
Summary of the high-quality zone from the RPD vs. CV analysis.
Figure 13.
Summary of the high-quality zone from the RPD vs. CV analysis.
Table 1.
Parameters used in the AOA.
Table 1.
Parameters used in the AOA.
Parameter | Description |
---|
| Lower Bound. Minimum value that a decision variable can take. Defines the lower limit of the search space. |
| Upper Bound. Maximum value that a decision variable can take. Defines the upper limit of the search space. |
| Current iteration number. Indicates the current generation in the optimization process. |
| Maximum number of iterations. Determines when the algorithm stops. |
| Predefined constant value, typically |
| Predefined constant value, typically |
| Curvature control parameter used in the computation of . It controls the rate at which decreases. Typical value: |
| A random number in to decide whether to perform exploration or exploitation. |
| A random number in used in exploration phase to select between division and multiplication. |
| A random number in used in exploitation phase to select between subtraction and addition. |
| Parameter random in . It is used as a stochastic scaling factor to alter the size of the change applied to each variable during the update process. |
| Small positive value to avoid division by zero, typically . |
| The best solution found so far. Used to guide the update of current solutions. |
Table 2.
Transfer functions (S-shaped and V-shaped); is a probability, while x is the individual’s continuous position.
Table 2.
Transfer functions (S-shaped and V-shaped); is a probability, while x is the individual’s continuous position.
Name | Formula | Rationale (Reason/Justification) |
---|
S1 | | Steeper logistic: More decisive mapping of the sign and magnitude of x; yields higher flip probabilities for moderate and accelerates early exploration without saturating too quickly. |
S2 | | Standard logistic: Balanced and stable mapping commonly used as a baseline; provides moderate flip probabilities across a wide range of and promotes steady convergence. |
S3 | | Smoother logistic: Gentler slope that damps abrupt changes in probability; reduces over-correction and oscillations, which helps to avoid spurious bit flips in noisy updates. |
S4 | | More conservative: Slower growth that delays bit fixing and mitigates premature convergence; favors exploitation in later stages while keeping low probability for small . |
V1 | | Very smooth in : Near-linear response around the origin with gradual saturation; allows fine-grained probability modulation for small and medium . |
V2 | | Fast rise and saturation: Probability increases quickly once grows and then plateaus; useful for decisive updates and rapid transitions from exploration to exploitation. |
V3 | | Controlled monotone growth: Strictly increasing with horizontal asymptote at 1; avoids early saturation while keeping a smooth derivative, yielding stable adjustments. |
V4 | | Intermediate curvature: Compromise between the speed of V2 and the smoothness of V1; the monotone bounded slope provides a good tradeoff for general-purpose use. |
Table 3.
Summary of binarization rules (STD, COM, PS, ELIT, ELITR). Transfer function ; random variate .
Table 3.
Summary of binarization rules (STD, COM, PS, ELIT, ELITR). Transfer function ; random variate .
Rule (Acronym) | Equation | Advantages |
---|
Standard (STD) | (9) | Simple and unbiased; flip probability controlled directly by ; stable baseline and easy to tune. |
Complement (COM) | (10) | Adds diversity by flipping current bit under control of ; helps to escape local minima. |
Static Probability (PS) | (11) | Noise-robust thresholds; preserves bit in a middle band; tunes conservativeness. |
Elitist (ELIT) | (12) | Bias towards current best; faster convergence and fewer late random oscillations. |
Elitist Roulette (ELITR) | (13) | Uses elite set via fitness-proportional sampling; balances exploitation and diversity. |
Table 4.
Binarization rules. Transfer function ; .
Table 4.
Binarization rules. Transfer function ; .
Binarization Functions. |
---|
- (a)
Standard (STD). Equation ( 9) - (b)
Complement (COM). Equation ( 10) - (c)
Probability (PS). Equation ( 11) - (d)
Elitist (ELIT). Equation ( 12) - (e)
Elitist Roulette (ELITR). Equation ( 13)
|
Table 5.
Description of the OR-Library SCP benchmark sets, including the number of instances, problem size, cost range, density, and optimal solution status.
Table 5.
Description of the OR-Library SCP benchmark sets, including the number of instances, problem size, cost range, density, and optimal solution status.
Instance Family | Number of Instances | m | n | Cost Range | Density (%) | Optimal Solution |
---|
4 | 10 | 200 | 1000 | [1, 100] | 2.00 | known |
5 | 10 | 200 | 2000 | [1, 100] | 2.00 | known |
6 | 5 | 200 | 1000 | [1, 100] | 5.00 | known |
A | 5 | 300 | 3000 | [1, 100] | 2.00 | known |
B | 5 | 300 | 3000 | [1, 100] | 5.00 | known |
C | 5 | 400 | 4000 | [1, 100] | 2.00 | known |
D | 5 | 400 | 4000 | [1, 100] | 5.00 | known |
NRE | 5 | 500 | 5000 | [1, 100] | 10.00 | known |
NRF | 5 | 500 | 5000 | [1, 100] | 20.00 | known |
NRG | 5 | 1000 | 10,000 | [1, 100] | 2.00 | unknown |
NRH | 5 | 1000 | 10,000 | [1, 100] | 5.00 | unknown |
Table 6.
Comprehensive summary of BAOA results per SCP instance set (V3–ELIT) over 100 iterations, as used in the parameter-setting experiments.
Table 6.
Comprehensive summary of BAOA results per SCP instance set (V3–ELIT) over 100 iterations, as used in the parameter-setting experiments.
Instance | m | n | Density (%) | Opt | Min | Max | Avg | Best RPD (%) | Total Time (min) |
---|
scp41 | 200 | 1000 | 2.0 | 429 | 433 | 463 | 444.75 | 0.93 | 7.62 |
scp51 | 200 | 2000 | 2.0 | 512 | 524 | 563 | 535.09 | 2.34 | 12.53 |
scp61 | 200 | 1000 | 5.0 | 138 | 141 | 151 | 144.25 | 2.17 | 5.61 |
scpa1 | 300 | 3000 | 2.0 | 253 | 267 | 278 | 269.47 | 5.53 | 25.52 |
scpb1 | 300 | 3000 | 5.0 | 279 | 284 | 306 | 294.35 | 1.79 | 17.88 |
scpc1 | 400 | 4000 | 2.0 | 146 | 160 | 152 | 150.58 | 9.59 | 48.12 |
scpd1 | 400 | 4000 | 5.0 | 60 | 60 | 65 | 62.47 | 0.00 | 30.87 |
scpnre1 | 500 | 5000 | 10.0 | 29 | 29 | 31 | 29.46 | 0.00 | 39.74 |
scpnrf1 | 500 | 5000 | 20.0 | 14 | 15 | 15 | 14.28 | 7.14 | 35.66 |
scpnrg1 | 1000 | 10000 | 2.0 | 63 | 64 | 69 | 66.64 | 1.59 | 326.13 |
scpnrh1 | 1000 | 10000 | 5.0 | 55 | 55 | 60 | 57.55 | 0.00 | 197.25 |
Table 7.
BAOA parameter settings.
Table 7.
BAOA parameter settings.
Parameter | Value |
---|
| 1 |
| −1 |
| 100 for Setting Parameter/500 for experiments |
P | Population size: 150 for Setting Parameter/200 for experiments |
Number of executions | 31 |
| 0.2 |
| 1.0. |
| . |
,,, | A random number in |
| |
Table 8.
BAOA results on SCP (Group 1). Columns: Opt, Min (best), Max, Avg, CV, and RPD.
Table 8.
BAOA results on SCP (Group 1). Columns: Opt, Min (best), Max, Avg, CV, and RPD.
Inst | Opt | Min | Max | Avg | CV | RPD |
---|
scp41 | 429 | 433 | 463 | 444.75 | 2.44 | 0.93 |
scp42 | 512 | 524 | 563 | 535.09 | 1.81 | 2.34 |
scp43 | 516 | 520 | 567 | 528.25 | 2.16 | 0.78 |
scp44 | 494 | 500 | 543 | 519.82 | 2.59 | 1.21 |
scp45 | 512 | 518 | 563 | 537.29 | 3.40 | 1.17 |
scp46 | 560 | 565 | 615 | 585.16 | 2.93 | 0.89 |
scp47 | 430 | 432 | 472 | 447.28 | 3.15 | 0.47 |
scp48 | 492 | 493 | 533 | 510.22 | 3.09 | 0.20 |
scp49 | 641 | 653 | 705 | 673.99 | 1.71 | 1.87 |
scp410 | 514 | 517 | 556 | 536.92 | 2.37 | 0.58 |
scp51 | 253 | 267 | 278 | 269.47 | 0.96 | 5.53 |
scp52 | 302 | 315 | 332 | 322.94 | 1.29 | 4.30 |
scp53 | 226 | 232 | 246 | 237.68 | 2.29 | 2.65 |
scp54 | 242 | 244 | 265 | 255.46 | 2.53 | 0.83 |
scp55 | 211 | 212 | 232 | 221.48 | 3.41 | 0.47 |
scp56 | 213 | 216 | 234 | 225.21 | 1.95 | 1.41 |
scp57 | 293 | 297 | 322 | 309.34 | 2.46 | 1.37 |
scp58 | 288 | 290 | 316 | 302.25 | 2.39 | 0.69 |
scp59 | 279 | 284 | 306 | 294.35 | 2.48 | 1.79 |
scp510 | 265 | 273 | 291 | 280.16 | 2.11 | 3.02 |
scp61 | 138 | 141 | 151 | 144.25 | 1.65 | 2.17 |
scp62 | 146 | 148 | 160 | 152.58 | 1.87 | 1.37 |
scp63 | 145 | 148 | 159 | 150.68 | 1.68 | 2.07 |
scp64 | 131 | 135 | 144 | 138.36 | 2.14 | 3.05 |
scp65 | 161 | 168 | 177 | 174.20 | 1.11 | 4.35 |
scpa1 | 253 | 257 | 278 | 263.98 | 2.82 | 1.58 |
scpa2 | 252 | 258 | 277 | 264.16 | 1.21 | 2.38 |
scpa3 | 232 | 238 | 255 | 243.87 | 1.28 | 2.59 |
scpa4 | 234 | 236 | 257 | 241.28 | 2.22 | 0.85 |
scpa5 | 236 | 237 | 259 | 246.14 | 2.98 | 0.42 |
scpb1 | 69 | 69 | 75 | 71.77 | 2.65 | 0.00 |
scpb2 | 76 | 76 | 83 | 78.54 | 3.70 | 0.00 |
scpb3 | 80 | 80 | 87 | 82.64 | 2.38 | 0.00 |
Table 9.
BAOA results on SCP (Group 2). Columns: Opt, Min (best), Max, Avg, CV, and RPD.
Table 9.
BAOA results on SCP (Group 2). Columns: Opt, Min (best), Max, Avg, CV, and RPD.
Inst | Opt | Min | Max | Avg | CV | RPD |
---|
scpb4 | 79 | 79 | 86 | 82.00 | 1.98 | 0.00 |
scpb5 | 72 | 72 | 78 | 74.59 | 3.05 | 0.00 |
scpc1 | 227 | 231 | 249 | 237.53 | 1.59 | 1.76 |
scpc2 | 219 | 221 | 240 | 228.10 | 2.20 | 0.91 |
scpc3 | 243 | 245 | 267 | 252.88 | 2.15 | 0.82 |
scpc4 | 219 | 224 | 240 | 230.24 | 1.73 | 2.28 |
scpc5 | 215 | 216 | 233 | 225.89 | 2.58 | 0.47 |
scpd1 | 60 | 60 | 65 | 62.47 | 2.20 | 0.00 |
scpd2 | 66 | 67 | 72 | 69.17 | 2.42 | 1.52 |
scpd3 | 72 | 73 | 79 | 76.12 | 1.78 | 1.39 |
scpd4 | 62 | 62 | 68 | 64.50 | 3.18 | 0.00 |
scpd5 | 61 | 62 | 67 | 63.73 | 1.74 | 1.64 |
scpnre1 | 29 | 29 | 31 | 29.46 | 1.70 | 0.00 |
scpnre2 | 30 | 30 | 32 | 31.33 | 2.44 | 0.00 |
scpnre3 | 27 | 27 | 29 | 28.13 | 1.47 | 0.00 |
scpnre4 | 28 | 28 | 30 | 28.99 | 2.39 | 0.00 |
scpnre5 | 28 | 28 | 30 | 28.71 | 2.62 | 0.00 |
scpnrf1 | 14 | 14 | 15 | 14.28 | 3.13 | 0.00 |
scpnrf2 | 15 | 15 | 16 | 15.49 | 3.23 | 0.00 |
scpnrf3 | 14 | 14 | 15 | 14.88 | 2.19 | 0.00 |
scpnrf4 | 14 | 14 | 15 | 14.57 | 3.40 | 0.00 |
scpnrf5 | 13 | 13 | 14 | 14.00 | 0.47 | 0.00 |
scpnrg1 | 176 | 178 | 193 | 185.24 | 1.93 | 1.14 |
scpnrg2 | 154 | 158 | 169 | 162.71 | 1.46 | 2.60 |
scpnrg3 | 166 | 170 | 182 | 176.42 | 1.77 | 2.41 |
scpnrg4 | 168 | 172 | 184 | 178.27 | 1.40 | 2.38 |
scpnrg5 | 168 | 169 | 184 | 177.78 | 1.75 | 0.60 |
scpnrh1 | 63 | 64 | 69 | 66.64 | 2.35 | 1.59 |
scpnrh2 | 63 | 64 | 69 | 66.64 | 2.00 | 1.59 |
scpnrh3 | 59 | 60 | 64 | 62.31 | 1.55 | 1.69 |
scpnrh4 | 58 | 59 | 63 | 61.52 | 1.65 | 1.72 |
scpnrh5 | 55 | 55 | 60 | 57.55 | 2.47 | 0.00 |
Table 10.
Average RPD results, 95% confidence intervals, and Coefficient of Variation (CV) (Group 1).
Table 10.
Average RPD results, 95% confidence intervals, and Coefficient of Variation (CV) (Group 1).
Instance | RPD Mean | RPD 95% CI | CV |
---|
scp41 | 2.6107 | [2.2333, 2.9881] | 0.1164 |
scp410 | 2.5292 | [2.0167, 3.0416] | 0.1632 |
scp42 | 6.3281 | [5.8252, 6.8310] | 0.0640 |
scp43 | 2.9845 | [2.5154, 3.4536] | 0.1266 |
scp44 | 4.4534 | [3.4963, 5.4105] | 0.1731 |
scp45 | 5.6250 | [4.7439, 6.5061] | 0.1262 |
scp46 | 2.4643 | [2.1000, 2.8286] | 0.1191 |
scp47 | 2.8837 | [2.1035, 3.6639] | 0.2179 |
scp48 | 2.4390 | [2.0821, 2.7959] | 0.1179 |
scp49 | 5.9594 | [5.4219, 6.4970] | 0.0726 |
scp51 | 7.1146 | [6.5135, 7.7157] | 0.0680 |
scp510 | 5.3585 | [4.9665, 5.7505] | 0.0589 |
scp52 | 8.2781 | [7.7746, 8.7817] | 0.0490 |
scp53 | 3.8938 | [3.4341, 4.3535] | 0.0951 |
scp54 | 4.2975 | [3.8386, 4.7564] | 0.0860 |
scp55 | 4.2654 | [3.5447, 4.9861] | 0.1361 |
scp56 | 4.6948 | [3.0984, 6.2913] | 0.2739 |
scp57 | 5.1877 | [4.9982, 5.3772] | 0.0294 |
scp58 | 4.0278 | [2.6441, 5.4114] | 0.2767 |
scp59 | 4.1577 | [3.4828, 4.8326] | 0.1307 |
scp61 | 3.6232 | [2.5212, 4.7252] | 0.2449 |
scp62 | 5.3425 | [4.4108, 6.2741] | 0.1404 |
scp63 | 2.7586 | [2.7586, 2.7586] | 0.0000 |
scp64 | 5.4962 | [4.2604, 6.7320] | 0.1811 |
scp65 | 10.0621 | [9.4169, 10.7074] | 0.0516 |
scpa1 | 4.5059 | [3.8475, 5.1644] | 0.1177 |
scpa2 | 4.8413 | [4.4290, 5.2535] | 0.0686 |
scpa3 | 5.5172 | [4.6378, 6.3967] | 0.1284 |
scpa4 | 4.8718 | [3.4381, 6.3055] | 0.2370 |
scpa5 | 4.4915 | [3.8916, 5.0914] | 0.1076 |
scpb1 | 2.3188 | [1.3332, 3.3045] | 0.3423 |
scpb2 | 0.7895 | [−0.1054, 1.6843] | 0.9129 |
Table 11.
Average RPD results, 95% confidence intervals, and Coefficient of Variation (CV) (Group 2).
Table 11.
Average RPD results, 95% confidence intervals, and Coefficient of Variation (CV) (Group 2).
Instance | RPD Mean | RPD 95% CI | CV |
---|
scpb3 | 1.2500 | [1.2500, 1.2500] | 0.0000 |
scpb4 | 3.5443 | [2.2293, 4.8593] | 0.2988 |
scpb5 | 0.8333 | [−0.1112, 1.7779] | 0.9129 |
scpc1 | 6.2555 | [5.7979, 6.7132] | 0.0589 |
scpc2 | 6.5753 | [5.7155, 7.4352] | 0.1053 |
scpc3 | 3.3745 | [2.7083, 4.0407] | 0.1590 |
scpc4 | 7.1233 | [6.8127, 7.4338] | 0.0351 |
scpc5 | 4.0930 | [3.6098, 4.5762] | 0.0951 |
scpd1 | 6.0000 | [4.1490, 7.8510] | 0.2485 |
scpd2 | 1.5152 | [1.5152, 1.5152] | 0.0000 |
scpd3 | 6.6667 | [4.7775, 8.5558] | 0.2282 |
scpd4 | 0.6452 | [−0.4518, 1.7421] | 1.3693 |
scpd5 | 4.2623 | [3.1474, 5.3772] | 0.2107 |
scpnre1 | 0.0000 | [0.0000, 0.0000] | nan |
scpnre2 | 4.0000 | [−0.5339, 8.5339] | 0.9129 |
scpnre3 | 3.7037 | [3.7037, 3.7037] | 0.0000 |
scpnre4 | 0.7143 | [−1.2689, 2.6975] | 2.2361 |
scpnre5 | 0.0000 | [0.0000, 0.0000] | nan |
scpnrf1 | 0.0000 | [0.0000, 0.0000] | nan |
scpnrf2 | 0.0000 | [0.0000, 0.0000] | nan |
scpnrf3 | 1.4286 | [−2.5378, 5.3949] | 2.2361 |
scpnrf4 | 0.0000 | [0.0000, 0.0000] | nan |
scpnrf5 | 7.6923 | [7.6923, 7.6923] | 0.0000 |
scpnrg1 | 7.2727 | [6.3529, 8.1926] | 0.1019 |
scpnrg2 | 6.1039 | [5.6623, 6.5455] | 0.0583 |
scpnrg3 | 7.8313 | [6.2446, 9.4181] | 0.1632 |
scpnrg4 | 7.8571 | [7.0475, 8.6668] | 0.0830 |
scpnrg5 | 7.2619 | [6.4523, 8.0715] | 0.0898 |
scpnrh2 | 6.3492 | [4.9556, 7.7428] | 0.1768 |
scpnrh3 | 5.0847 | [5.0847, 5.0847] | 0.0000 |
scpnrh4 | 5.8621 | [4.6895, 7.0346] | 0.1611 |
scpnrh5 | 2.5455 | [1.3089, 3.7820] | 0.3912 |
Table 12.
Average time: Average seconds per iteration. No-progress iteration: The iteration at which fitness shows no improvement. Stagnation ratio: No-progress iteration/total iterations.
Table 12.
Average time: Average seconds per iteration. No-progress iteration: The iteration at which fitness shows no improvement. Stagnation ratio: No-progress iteration/total iterations.
Instance | Avg. Time (s) | No-Progress Iteration | Stagnation Ratio |
---|
scp41 | 3.302 | 160 | 32% |
scp51 | 5.3740 | 150 | 30% |
scp61 | 2.345 | 61 | 12.2% |
scpa1 | 10.819 | 45 | 9% |
scpb1 | 10.129 | 27 | 5.4% |
scpc1 | 27.113 | 201 | 40.2% |
scpd1 | 64.522 | 14 | 2.8% |
Table 13.
Comparative performance analysis of the evaluated metaheuristics.
Table 13.
Comparative performance analysis of the evaluated metaheuristics.
MH | Avg Min RPD | Best Instances | Avg Rank |
---|
BAOA | 1.51 | 21 | 2.36 |
SCA | 2.25 | 15 | 1.67 |
PSA | 1.83 | 6 | 1.84 |
GWO | 2.13 | 2 | 1.80 |
BGO | 2.15 | 1 | 1.93 |
Table 14.
Performance comparison between the BAOA and recent metaheuristics (SCA, PSA, GWO, BGO) on benchmark SCP instances. The table reports the best cost and the RPD (%) for each method; lower values are better for both metrics, highlighting the BAOA’s competitiveness across instances.
Table 14.
Performance comparison between the BAOA and recent metaheuristics (SCA, PSA, GWO, BGO) on benchmark SCP instances. The table reports the best cost and the RPD (%) for each method; lower values are better for both metrics, highlighting the BAOA’s competitiveness across instances.
Inst | Opt | BAOA | SCA | PSA | GWO | BGO |
---|
Min | Avg | RPD | Min | Avg | RPD | Min | Avg | RPD | Min | Avg | RPD | Min | Avg | RPD |
---|
41 | 429 | 433 | 444.75 | 0.93 | 431 | 433.75 | 0.466 | 431 | 433.78 | 0.466 | 433 | 434.0 | 0.932 | 433 | 433.03 | 0.932 |
42 | 512 | 517 | 536.92 | 0.58 | 523 | 527.0 | 21.48 | 517 | 528.29 | 0.977 | 518 | 526.55 | 11.72 | 518 | 525.10 | 11.72 |
43 | 516 | 524 | 535.09 | 2.34 | 520 | 521.06 | 0.775 | 520 | 521.47 | 0.775 | 520 | 520.88 | 0.775 | 520 | 520.41 | 0.775 |
44 | 494 | 520 | 528.25 | 0.78 | 496 | 504.45 | 4.049 | 496 | 506.58 | 2.142 | 499 | 505.42 | 1.012 | 499 | 504.48 | 1.012 |
45 | 512 | 500 | 519.82 | 1.21 | 514 | 518.29 | 0.391 | 518 | 519.68 | 1.172 | 518 | 518.13 | 1.172 | 518 | 518.13 | 1.172 |
46 | 560 | 518 | 537.29 | 1.17 | 564 | 567.81 | 0.714 | 565 | 569.0 | 0.893 | 565 | 567.77 | 0.714 | 567 | 567.18 | 1.250 |
47 | 430 | 505 | 585.16 | 0.89 | 432 | 434.29 | 0.465 | 433 | 434.26 | 0.698 | 432 | 434.0 | 0.465 | 433 | 433.97 | 0.698 |
48 | 492 | 432 | 447.28 | 0.47 | 493 | 494.06 | 0.203 | 493 | 493.84 | 0.203 | 492 | 493.84 | 0.203 | 492 | 493.84 | 0.203 |
49 | 641 | 493 | 510.22 | 0.20 | 655 | 663.77 | 21.84 | 656 | 667.52 | 23.40 | 654 | 662.77 | 20.28 | 653 | 662.10 | 18.72 |
410 | 514 | 653 | 673.99 | 1.87 | 517 | 522.68 | 0.584 | 517 | 523.42 | 0.973 | 517 | 523.42 | 0.973 | 517 | 524.06 | 0.584 |
51 | 253 | 267 | 269.47 | 5.53 | 267 | 267.77 | 5.53 | 257 | 267.03 | 1.58 | 267 | 267.48 | 5.53 | 267 | 267.48 | 5.53 |
52 | 302 | 315 | 322.94 | 4.30 | 315 | 319.50 | 4.30 | 313 | 319.12 | 3.64 | 315 | 319.09 | 4.30 | 315 | 319.09 | 4.30 |
53 | 226 | 232 | 237.68 | 2.65 | 230 | 232.03 | 1.77 | 229 | 231.84 | 1.33 | 232 | 232.00 | 2.65 | 232 | 232 | 2.65 |
54 | 242 | 244 | 255.46 | 0.83 | 244 | 248.32 | 0.83 | 244 | 247.90 | 0.83 | 244 | 248.10 | 0.83 | 244 | 248.09 | 0.82 |
55 | 211 | 212 | 221.48 | 0.47 | 212 | 214.45 | 0.47 | 212 | 213.42 | 0.47 | 212 | 213.06 | 0.47 | 212 | 213.06 | 0.47 |
56 | 213 | 216 | 225.21 | 1.41 | 216 | 223.35 | 1.41 | 216 | 223.35 | 1.41 | 216 | 221.90 | 1.41 | 216 | 221.90 | 1.40 |
57 | 293 | 297 | 309.34 | 1.37 | 296 | 302.19 | 1.02 | 297 | 301.81 | 1.37 | 299 | 301.29 | 2.05 | 299 | 301.29 | 2.04 |
58 | 288 | 290 | 302.25 | 0.69 | 290 | 297.52 | 0.69 | 290 | 297.61 | 0.69 | 290 | 297.39 | 0.69 | 290 | 297.38 | 0.69 |
59 | 279 | 284 | 294.35 | 1.79 | 284 | 288.13 | 1.79 | 284 | 288.26 | 1.79 | 284 | 286.23 | 1.79 | 284 | 286.22 | 1.79 |
510 | 265 | 273 | 280.16 | 3.02 | 272 | 274.42 | 2.64 | 272 | 273.87 | 2.64 | 273 | 274.03 | 3.02 | 273 | 274.03 | 3.01 |
61 | 138 | 141 | 143.39 | 2.17 | 141 | 144.10 | 2.17 | 141 | 143.03 | 2.17 | 141 | 142.23 | 2.17 | 141 | 142.23 | 2.17 |
62 | 146 | 148 | 150.48 | 1.37 | 148 | 151.06 | 1.37 | 148 | 150.10 | 1.37 | 148 | 150.42 | 1.37 | 148 | 150.42 | 1.37 |
63 | 145 | 148 | 149.23 | 2.07 | 148 | 150.03 | 2.07 | 147 | 149.23 | 1.38 | 148 | 148.61 | 2.07 | 148 | 148.61 | 2.07 |
64 | 131 | 134 | 135.39 | 2.29 | 135 | 135.39 | 3.05 | 135 | 135.13 | 3.05 | 134 | 135.23 | 2.29 | 134 | 135.23 | 2.29 |
65 | 161 | 172 | 174.87 | 6.83 | 165 | 174.81 | 2.48 | 172 | 174.52 | 6.83 | 171 | 174.48 | 6.21 | 171 | 174.48 | 6.21 |
a1 | 253 | 257 | 263.98 | 1.58 | 257 | 257.54 | 1.58 | 257 | 257.67 | 1.58 | 257 | 257.67 | 1.58 | 257 | 257.06 | 1.58 |
a2 | 252 | 258 | 264.16 | 2.38 | 258 | 262.25 | 2.38 | 258 | 263.12 | 2.38 | 258 | 261.38 | 2.38 | 258 | 261.12 | 2.38 |
a3 | 232 | 238 | 243.87 | 2.59 | 235 | 241 | 1.29 | 236 | 241.77 | 1.72 | 237 | 240.83 | 2.15 | 235 | 240.32 | 1.29 |
a2 | 234 | 236 | 241.28 | 0.85 | 236 | 237.48 | 0.85 | 236 | 237.06 | 0.85 | 236 | 236.74 | 0.85 | 236 | 236.61 | 0.85 |
a5 | 236 | 237 | 246.14 | 0.42 | 237 | 239.32 | 0.42 | 237 | 238.67 | 0.42 | 237 | 238.77 | 0.42 | 237 | 238.45 | 0.42 |
b1 | 69 | 76 | 78.54 | 0.1 | 69 | 70.48 | 0 | 69 | 70.64 | 0 | 69 | 70.25 | 0 | 69 | 70.22 | 0 |
b2 | 76 | 80 | 82.64 | 0.05 | 76 | 76.58 | 0 | 76 | 77.16 | 0 | 76 | 76.35 | 0 | 76 | 76.19 | 0 |
b3 | 80 | 80 | 82.0 | 0.0 | 80 | 81.22 | 0 | 80 | 81.25 | 0 | 80 | 81.12 | 0 | 81 | 81.16 | 1.25 |
b4 | 79 | 79 | 74.59 | 0.0 | 79 | 81.09 | 0 | 79 | 81.80 | 0 | 79 | 80.58 | 0 | 79 | 80.51 | 0 |
b5 | 72 | 72 | 74.59 | 0.0 | 72 | 72.38 | 0 | 72 | 72.54 | 0 | 72 | 72.29 | 0 | 72 | 72.54 | 0 |
c1 | 227 | 231 | 237.53 | 1.76 | 232 | 234.09 | 2.20 | 231 | 234.35 | 1.76 | 232 | 233.51 | 2.20 | 232 | 233.41 | 2.20 |
c2 | 219 | 221 | 228.10 | 0.91 | 221 | 224.51 | 0.91 | 221 | 225.00 | 0.91 | 221 | 224.16 | 0.91 | 221 | 223.74 | 0.91 |
c3 | 243 | 245 | 252.88 | 0.82 | 245 | 249.77 | 0.82 | 247 | 252.25 | 1.64 | 245 | 248.03 | 0.82 | 245 | 247.77 | 0.82 |
c4 | 219 | 224 | 230.24 | 2.28 | 224 | 226.96 | 2.28 | 224 | 228.83 | 2.28 | 221 | 226.58 | 0.91 | 222 | 225.51 | 1.36 |
c5 | 215 | 216 | 225.89 | 0.47 | 217 | 219.61 | 0.93 | 216 | 219.51 | 0.46 | 216 | 218.83 | 0.46 | 216 | 219.06 | 0.46 |
d1 | 60 | 60 | 62.470 | 0.000 | 60 | 619.355 | 0.000 | 60 | 618.065 | 0.000 | 60 | 62.129 | 0.000 | 60 | 621.613 | 1.6667 |
d2 | 66 | 67 | 69.170 | 1.520 | 67 | 682.258 | 1.5152 | 67 | 680.968 | 1.5152 | 67 | 68.129 | 1.5152 | 67 | 677.742 | 1.5152 |
d3 | 72 | 73 | 76.120 | 1.390 | 73 | 758.065 | 1.3889 | 74 | 762.903 | 1.3889 | 74 | 756.774 | 2.7778 | 74 | 758.387 | 2.7778 |
d4 | 62 | 62 | 64.500 | 0.000 | 62 | 630.968 | 0.000 | 62 | 636.774 | 0.000 | 62 | 632.581 | 0.000 | 62 | 628.387 | 0.000 |
d5 | 61 | 62 | 63.730 | 1.640 | 63 | 631.613 | 3.2787 | 63 | 632.903 | 1.6393 | 63 | 632.903 | 3.2787 | 63 | 630.323 | 3.2787 |
Table 15.
Normality tests (Shapiro–Wilk and Kolmogorov–Smirnov–Lilliefors) applied to the differences between the BAOA and other algorithms (RPD); indicates rejection of normality.
Table 15.
Normality tests (Shapiro–Wilk and Kolmogorov–Smirnov–Lilliefors) applied to the differences between the BAOA and other algorithms (RPD); indicates rejection of normality.
Set | Test | SCA | PSA | GWO | BGO |
---|
scp4x | Shapiro | W = 0.704, p = 0.011 | W = 0.995, p = 0.994 | W = 0.674, p = 0.005 | W = 0.674, p = 0.005 |
| Lillie | stat = 0.342, p = 0.052 | stat = 0.155, p = 0.960 | stat = 0.430, p = 0.002 | stat = 0.430, p = 0.002 |
scp5x | Shapiro | W = 0.552, p = 0.0001 | W = 0.806, p = 0.091 | W = 1.000, p = 1.000 | W = 0.552, p = 0.0001 |
| Lillie | stat = 0.473, p = 0.001 | stat = 0.267, p = 0.308 | – | stat = 0.473, p = 0.001 |
scp6x | Shapiro | W = 0.682, p = 0.006 | W = 0.882, p = 0.320 | W = 0.552, p = 0.0001 | W = 0.552, p = 0.0001 |
| Lillie | stat = 0.436, p = 0.001 | stat = 0.311, p = 0.129 | stat = 0.473, p = 0.001 | stat = 0.473, p = 0.001 |
scpa | Shapiro | W = 0.552, p = 0.0001 | W = 0.552, p = 0.0001 | W = 0.552, p = 0.0001 | W = 0.552, p = 0.0001 |
| Lillie | stat = 0.473, p = 0.001 | stat = 0.473, p = 0.001 | stat = 0.473, p = 0.001 | stat = 0.473, p = 0.001 |
scpb | Shapiro | W = 0.771, p = 0.046 | W = 0.771, p = 0.046 | W = 0.771, p = 0.046 | W = 0.620, p = 0.001 |
| Lillie | stat = 0.349, p = 0.044 | stat = 0.349, p = 0.044 | stat = 0.349, p = 0.044 | stat = 0.448, p = 0.001 |
scpc | Shapiro | W = 0.698, p = 0.009 | W = 0.562, p = 0.0002 | W = 0.767, p = 0.043 | W = 0.828, p = 0.134 |
| Lillie | stat = 0.367, p = 0.025 | stat = 0.470, p = 0.001 | stat = 0.402, p = 0.008 | stat = 0.370, p = 0.024 |
scpd | Shapiro | W = 0.555, p = 0.0001 | W = 0.745, p = 0.027 | W = 0.731, p = 0.020 | W = 0.758, p = 0.035 |
| Lillie | stat = 0.472, p = 0.001 | stat = 0.344, p = 0.049 | stat = 0.366, p = 0.027 | stat = 0.299, p = 0.174 |
Table 16.
Wilcoxon signed-rank test p-values for the BAOA compared with other algorithms (RPD); a value of ns indicates (no significant difference).
Table 16.
Wilcoxon signed-rank test p-values for the BAOA compared with other algorithms (RPD); a value of ns indicates (no significant difference).
Set | SCA | PSA | GWO | BGO |
---|
scp4x | 0.812 (ns) | 0.812 (ns) | 0.812 (ns) | 0.812 (ns) |
scp5x | 0.317 (ns) | 0.109 (ns) | NA | 0.317 (ns) |
scp6x | 0.655 (ns) | 0.655 (ns) | 0.317 (ns) | 0.317 (ns) |
scpa | 0.317 (ns) | 0.317 (ns) | 0.317 (ns) | 0.317 (ns) |
scpb | 0.180 (ns) | 0.180 (ns) | 0.180 (ns) | 1.000 (ns) |
scpc | 0.180 (ns) | 0.655 (ns) | 0.593 (ns) | 0.593 (ns) |
scpd | 1.000 (ns) | 0.109 (ns) | 0.285 (ns) | 0.144 (ns) |
Table 17.
Computational complexity of the BAOA per SCP instance set. The general complexity is , with iterations and individuals.
Table 17.
Computational complexity of the BAOA per SCP instance set. The general complexity is , with iterations and individuals.
Instance Set | m | n | Big-O | Complexity (Numerical) |
---|
scp41 | 200 | 1000 | | |
scp51 | 200 | 2000 | | |
scp61 | 200 | 1000 | | |
scpa1 | 300 | 3000 | | |
scpb1 | 300 | 3000 | | |
scpc1 | 400 | 4000 | | |
scpd1 | 400 | 4000 | | |