Spatial Decay Estimates for Solutions of a Class of Evolution Equations Containing a Biharmonic Operator
Abstract
1. Introduction
2. The Function Expression
3. Spatial Decay Estimates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Horgan, C.O. Recent development concerning Saint-Venant’s principle: An update. Appl. Mech. Rev. 1989, 42, 295–303. [Google Scholar] [CrossRef]
- Flavin, J.N. On knowle’s version of saint-venant’s principle in two-dimensional elastostatics. Arch. Ration. Mech. Anal. 1974, 53, 366–375. [Google Scholar] [CrossRef]
- Payne, L.E.; Schaefer, P.W. Some Phragmén-Lindelöf type results for the biharmonic equation. Z. Angew. Math. Phys. (ZAMP) 1994, 45, 414–432. [Google Scholar] [CrossRef]
- Knowles, J.K. An energy estimates for the biharmonic equation and its application to Saint-venant’s principle in plane elastostatics. Indian J. Pure Appl. Math. 1983, 14, 791–805. [Google Scholar]
- Lin, C.H. Spatial decay estimates and energy bounds for the stokes flow equation. Stab. Appl. Anal. Contin. Media 1992, 2, 249–264. [Google Scholar]
- Horgan, C.O. Decay estimates for the biharmonic equation with applications to Saint-venant’s principles in plane elasticity and stokes flows. Q. Appl. Math. 1989, 47, 147–157. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, C.H. Phragmén-Lindelöf type alternative results for the stokes flow equation. Math. Inequal. Appl. 2006, 9, 671–694. [Google Scholar]
- Li, Y.F.; Lin, C.H. Spatial decay for solutions to 2-d boussinesq system with variable thermal diffusivity. Acta Appl. Math. 2018, 154, 111–130. [Google Scholar] [CrossRef]
- Li, Y.F.; Chen, X.J. Phragmén-Lindelöf alternative results in time-dependent double-diffusive Darcy plane flow. Math. Meth. Appl. Sci. 2022, 45, 6982–6997. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.H. Asymptotic profiles of solutions for regularity-loss-type generalized thermoelastic plate equations and their applications. Z. Angew. Math. Phys. (ZAMP) 2020, 71, 15–55. [Google Scholar] [CrossRef]
- Jong, U.K. On the energy decay of a linear thermoelastic bar and plate. SIAM J. Numer. Anal. 2020, 23, 889–899. [Google Scholar]
- Horgan, C.O. Recent development concerning Saint-Venant’s principle: An second update. Appl. Mech. Rev. 1996, 49, 101–111. [Google Scholar] [CrossRef]
- Leseduarte, M.C.; Quintanilla, R. Spatial behavior in high order partial differential equations. Math. Methods Appl. Anal. 2018, 41, 2480–2493. [Google Scholar] [CrossRef]
- Knops, R.J.; Quintanilla, R. Spatial decay in transient heat conduction for general elongated regions. Q. Appl. Math. 2018, 76, 611–625. [Google Scholar] [CrossRef]
- Song, J.C. Improved decay estimates in time-dependent Stokes flow. J. Math. Anal. Appl. 2003, 288, 505–517. [Google Scholar] [CrossRef]
- Song, J.C. Improved spatial decay bounds in the plane Stokes flow. Appl. Math. Mech.-Engl. Ed. 2009, 30, 833–838. [Google Scholar] [CrossRef]
- Chen, X.J.; Li, Y.F. Spatial properties and the influence of the Soret coefficient on the solutions of time-dependent double-diffusive Darcy plane flow. Electron. Res. Arch. 2022, 31, 421–441. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, X.L.; Shi, J.C.; Zhi, W.J. Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in R2. Appl. Math. Comput. 2021, 411, 126488. [Google Scholar]
- Fernández, J.R.; Quintanilla, R. Analysis of a higher order problem within the second gradient theory. Appl. Math. Lett. 2024, 154, 109086. [Google Scholar] [CrossRef]
- Lin, C.H.; Payne, L.E. A Phragmén-Lindelöf alternative for a class of quasi-linear second order parabolic problems. Differ. Integral Equ. 1995, 8, 539–551. [Google Scholar]
- Leseduarte, M.C.; Quintanilla, R. Phragmén-Lindelöf of alternative for the Laplace equation with dynamic boundary conditions. J. Appl. Anal. Comput. 2017, 7, 1323–1335. [Google Scholar] [CrossRef]
- Horgan, C.O.; Payne, L.E. Phragmén-Lindelöf type results for Harmonic functions with nonlinear boundary conditions. Arch. Ration. Mech. Anal. 1993, 122, 123–144. [Google Scholar] [CrossRef]
- Tang, G.S.; Liu, Y.; Liao, W.H. Spatial bbehavior of a coupled system of wave-plate type. Abstr. Appl. Anal. 2014, 2014, 853693. [Google Scholar] [CrossRef]
- Shi, J.C.; Wang, Z.; Chen, Y. Structural stability for a couepled system of wave plate type. Discret. Dyn. Nat. Soc. 2020, 2020, 6839369. [Google Scholar] [CrossRef]
- Shi, J.C.; Liu, Y. Spatial decay estimates for the coupled system of wave-plate type with thermal effect. AIMS Math. 2025, 10, 338–352. [Google Scholar] [CrossRef]
- Naito, Y.; Shibata, Y. On the Lp analytic semigroup associated with linear thermoelastic plate equations in the half-space. J. Math. Soc. Jpn. 2009, 61, 971–1011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Lin, Y. Spatial Decay Estimates for Solutions of a Class of Evolution Equations Containing a Biharmonic Operator. Mathematics 2025, 13, 2821. https://doi.org/10.3390/math13172821
Shi J, Lin Y. Spatial Decay Estimates for Solutions of a Class of Evolution Equations Containing a Biharmonic Operator. Mathematics. 2025; 13(17):2821. https://doi.org/10.3390/math13172821
Chicago/Turabian StyleShi, Jincheng, and Yiwu Lin. 2025. "Spatial Decay Estimates for Solutions of a Class of Evolution Equations Containing a Biharmonic Operator" Mathematics 13, no. 17: 2821. https://doi.org/10.3390/math13172821
APA StyleShi, J., & Lin, Y. (2025). Spatial Decay Estimates for Solutions of a Class of Evolution Equations Containing a Biharmonic Operator. Mathematics, 13(17), 2821. https://doi.org/10.3390/math13172821