Reduction and Efficient Solution of ILP Models of Mixed Hamming Packings Yielding Improved Upper Bounds
Abstract
1. Introduction
1.1. Related Work
1.2. Our Contribution
2. Notation and Conventions
3. Known Bounds and Properties
4. ILP Models for Hamming Packing
5. Reducing ILPs Using Contact Graphs
Algorithm 1 Transforming C to with the same number of codeword and minimal distance, and connected |
|
- Code C remains a d-feasible Hamming packing at the end of each loop in lines 8, 22, and 24;
- is a connected graph in line 8;
- Once reaches at line 11, then must lose one of its elements that will move to at the end of the while loop at line 8;
- After exiting the for loop (line 22), does not change; no Hamming distance will be altered between elements of ;
- At the end of the for loop, the distance between and decreases exactly by one; as the distance was larger than d at the beginning of the loop, still cannot contain any pair with a distance less than d;
- The cardinality of is strictly decreasing or is strictly decreasing in lines 8, 22, and 24.
6. Computational Results
6.1. Calculating and
6.2. Calculating
- 00000000, 00111000, 11011000, 21101000, 31110000,
- 00000000, 00111000, 11100000, 21010000, 31001000,
- 00000000, 01111000, 11100000, 10011000, 21010000,
- 00000000, 01111000, 11100000, 21010000, 30011000,
- 00000000, 01111000, 11100000, 21010000, 31001000.
7. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CG | contact graph |
CPU | central processing unit |
ILP | integer linear program |
KJS | Komamiya–Joshi–Singleton |
MDS | maximum distance separable (code) |
MOLS | mutually orthogonal Latin squares |
OA | orthogonal array |
RAM | random access memory |
Appendix A. Summary of Bounds
Appendix A.1. Codes with Length 4, Distance 3
Appendix A.2. Codes with Length 5, Distance 3
Appendix A.3. Codes with Length 5, Distance 4
Appendix A.4. Codes with Length 6, Distance 3
Appendix A.5. Codes with Length 6, Distance 4
Appendix A.6. Codes with Length 6, Distance 5
Appendix A.7. Codes with Length 7, Distance 3
Appendix A.8. Codes with Length 7, Distance 4
Appendix A.9. Codes with Length 7, Distance 5
Appendix A.10. Codes with Length 8, Distance 3
Appendix A.11. Codes with Length 8, Distance 4
Appendix A.12. Codes with Length 8, Distance 5
Appendix A.13. Codes with Length 8, Distance 6
References and Note
- Stinson, D.R. Combinatorial Designs: Constructions and Analysis; Springer: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Etzion, T. Perfect Codes and Related Structures; World Scientific: Singapore, 2022. [Google Scholar] [CrossRef]
- Huffman, W.C.; Kim, J.L.; Solé, P. (Eds.) Concise Encyclopedia of Coding Theory; Chapman and Hall/CRC: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Virtakallio, J. A football pool system with 729 columns. Published in 3 parts in Veikkaus-Lotto (Finnish Football Magazine), in 3 volumes 27, 28 and 33, in 1947. ISSN 0784-7114. (In Finnish)
- Best, M.; Brouwer, A. The triply shortened binary Hamming code is optimal. Discret. Math. 1977, 17, 235–245. [Google Scholar] [CrossRef]
- Best, M.; Brouwer, A.; MacWilliams, F.; Odlyzko, A.; Sloane, N. Bounds for binary codes of length less than 25. IEEE Trans. Inf. Theory 1978, 24, 81–93. [Google Scholar] [CrossRef]
- Etzion, T.; Greenberg, G. Constructions for perfect mixed codes and other covering codes. IEEE Trans. Inf. Theory 1993, 39, 209–214. [Google Scholar] [CrossRef]
- Brouwer, A.; Hamalainen, H.; Ostergard, P.; Sloane, N. Bounds on mixed binary/ternary codes. IEEE Trans. Inf. Theory 1998, 44, 140–161. [Google Scholar] [CrossRef]
- Bogdanova, G.T.; Brouwer, A.E.; Kapralov, S.N.; Östergård, P.R.J. Error-correcting codes over an alphabet of four elements. Des. Codes Cryptogr. 2001, 23, 333–342. [Google Scholar] [CrossRef]
- Laaksonen, A.; Östergård, P.R.J. New Lower Bounds on Error-Correcting Ternary, Quaternary and Quinary Codes. In Coding Theory and Applications, Proceedings of the 5th International Castle Meeting, ICMCTA 2017, Vihula, Estonia, 28–31 August 2017; Springer International Publishing: Cham, Switzerland, 2017; pp. 228–237. [Google Scholar] [CrossRef]
- Delsarte, P. Bounds for Unrestricted Codes, by Linear Programming. Philips Res. Rep. 1972, 27, 272–289. [Google Scholar]
- van Wee, G. Bounds on packings and coverings by spheres inq-ary and mixed Hamming spaces. J. Comb. Theory Ser. A 1991, 57, 117–129. [Google Scholar] [CrossRef]
- van Lint, J.; van Wee, G. Generalized bounds on binary/ternary mixed packing and covering codes. J. Comb. Theory Ser. A 1991, 57, 130–143. [Google Scholar] [CrossRef]
- Perkins, S.; Sakhnovich, A.; Smith, D. On an upper bound for mixed error-correcting codes. IEEE Trans. Inf. Theory 2006, 52, 708–712. [Google Scholar] [CrossRef]
- Gijswijt, D.; Schrijver, A.; Tanaka, H. New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming. J. Comb. Theory Ser. A 2006, 113, 1719–1731. [Google Scholar] [CrossRef]
- Litjens, B. Semidefinite bounds for mixed binary/ternary codes. Discret. Math. 2018, 341, 1740–1748. [Google Scholar] [CrossRef]
- Singleton, R. Maximum distance q-nary codes. IEEE Trans. Inf. Theory 1964, 10, 116–118. [Google Scholar] [CrossRef]
- Tietäväinen, A. On the Nonexistence of Perfect Codes over Finite Fields. SIAM J. Appl. Math. 1973, 24, 88–96. [Google Scholar] [CrossRef]
- Ostergard, P.R.J.; Pottonen, O.; Phelps, K.T. The Perfect Binary One-Error-Correcting Codes of Length 15: Part II—Properties. IEEE Trans. Inf. Theory 2010, 56, 2571–2582. [Google Scholar] [CrossRef]
- Best, M. Binary codes with a minimum distance of four (Corresp.). IEEE Trans. Inf. Theory 1980, 26, 738–742. [Google Scholar] [CrossRef]
- Brouwer, A.E. Mixed Binary/Ternary Codes. 2018. Available online: https://www.win.tue.nl/~aeb/codes/23codes.html (accessed on 5 April 2023).
- Östergård, P.R. Classification of binary/ternary one-error-correcting codes. Discret. Math. 2000, 223, 253–262. [Google Scholar] [CrossRef]
- Östergård, P.R.J. On Binary/Ternary Error-Correcting Codes with Minimum Distance 4. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes; Springer: Berlin/Heidelberg, Germany, 1999; pp. 472–481. [Google Scholar] [CrossRef]
- Östergård, P.R.J. Constructing combinatorial objects via cliques. In Surveys in Combinatorics 2005; Cambridge University Press: Cambridge, UK, 2005; pp. 57–82. [Google Scholar] [CrossRef]
- Schütte, K.; van der Waerden, B.L. Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? Math. Ann. 1951, 123, 96–124. [Google Scholar] [CrossRef]
- Komamiya, Y. Application of logical mathematics to information theory. In Proceedings of the 3rd Japan National Congress on Applied Mathematics, Tokyo, Japan, 9 September 1953; pp. 437–442. [Google Scholar]
- Joshi, D. A note on upper bounds for minimum distance codes. Inf. Control 1958, 1, 289–295. [Google Scholar] [CrossRef]
- MacWilliams, F.; Sloane, N. (Eds.) 11 MDS codes. In The Theory of Error-Correcting Codes; Elsevier: Amsterdam, The Netherlands, 1977; Volume 16, pp. 317–331. [Google Scholar] [CrossRef]
- Chowla, S.; Erdős, P.; Straus, E.G. On the Maximal Number of Pairwise Orthogonal Latin Squares of a Given Order. Can. J. Math. 1960, 12, 204–208. [Google Scholar] [CrossRef]
- Wang, S.; Wilson, R.M. A few more squares II. Congr. Numer. 1978, 21, 688. [Google Scholar]
- Todorov, D.T. Four Mutually Orthogonal Latin Squares of Order 14. J. Comb. Des. 2012, 20, 363–367. [Google Scholar] [CrossRef]
- Ji, L.; Yin, J. Constructions of new orthogonal arrays and covering arrays of strength three. J. Comb. Theory Ser. A 2010, 117, 236–247. [Google Scholar] [CrossRef]
- Li, D.; Cao, H. New results on orthogonal arrays OA(3,5,4n+2). J. Comb. Theory Ser. A 2024, 204, 105864. [Google Scholar] [CrossRef]
- Plotkin, M. Binary codes with specified minimum distance. IEEE Trans. Inf. Theory 1960, 6, 445–450. [Google Scholar] [CrossRef]
- Ostergard, P.; Baicheva, T.; Kolev, E. Optimal binary one-error-correcting codes of length 10 have 72 codewords. IEEE Trans. Inf. Theory 1999, 45, 1229–1231. [Google Scholar] [CrossRef]
- IBM Corporation. CPLEX, version 22.1.0.0; IBM Corporation: Armonk, NY, USA, 2022. Available online: https://www.ibm.com/docs/en/icos/22.1.0 (accessed on 26 May 2025).
- Bolusani, S.; Besançon, M.; Bestuzheva, K.; Chmiela, A.; Dionísio, J.; Donkiewicz, T.; van Doornmalen, J.; Eifler, L.; Ghannam, M.; Gleixner, A.; et al. The SCIP Optimization Suite 9.0. Technical Report ZIB-Report 24-02-29, Optimization Online; Zuse Institute: Berlin, Germany, 2024; Available online: https://optimization-online.org/wp-content/uploads/2024/02/scipopt-90-2.pdf (accessed on 26 May 2025).
- Makhorin, A. GNU Linear Programming Kit, version 5.0. Free Software Foundation (FSF): Boston, MA, USA, 2020. Available online: https://www.gnu.org/software/glpk/ (accessed on 26 May 2025).
- Tarry, G. Le Problème des 36 Officiers; Secrétariat de L’Association Française pour L’avancement des Sciences: Paris, France, 1900. [Google Scholar]
- Horton, J. Sub-latin squares and incomplete orthogonal arrays. J. Comb. Theory Ser. A 1974, 16, 23–33. [Google Scholar] [CrossRef]
- Brouwer, A. Four mols of order 10 with a hole of order 2. J. Stat. Plan. Inference 1984, 10, 203–205. [Google Scholar] [CrossRef]
- Egan, J.; Wanless, I.M. Enumeration of MOLS of small order. Math. Comput. 2015, 85, 799–824. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naszvadi, P.; Adam, P.; Koniorczyk, M. Reduction and Efficient Solution of ILP Models of Mixed Hamming Packings Yielding Improved Upper Bounds. Mathematics 2025, 13, 2633. https://doi.org/10.3390/math13162633
Naszvadi P, Adam P, Koniorczyk M. Reduction and Efficient Solution of ILP Models of Mixed Hamming Packings Yielding Improved Upper Bounds. Mathematics. 2025; 13(16):2633. https://doi.org/10.3390/math13162633
Chicago/Turabian StyleNaszvadi, Péter, Peter Adam, and Mátyás Koniorczyk. 2025. "Reduction and Efficient Solution of ILP Models of Mixed Hamming Packings Yielding Improved Upper Bounds" Mathematics 13, no. 16: 2633. https://doi.org/10.3390/math13162633
APA StyleNaszvadi, P., Adam, P., & Koniorczyk, M. (2025). Reduction and Efficient Solution of ILP Models of Mixed Hamming Packings Yielding Improved Upper Bounds. Mathematics, 13(16), 2633. https://doi.org/10.3390/math13162633