Global Boundedness of Weak Solutions to Fractional Nonlocal Equations
Abstract
1. Introduction
2. Notations and Preliminaries
2.1. Notations for Function Spaces
2.2. Preliminaries
3. Proof of Theorem 1 and Theorem 2
4. Proof of Theorem 3
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Constantin, P. Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany, 2006; Volume 1871, pp. 1–43. [Google Scholar]
- Amick, C.J.; Toland, J.F. Uniqueness and related analytic properties for Benjamin-Ono equation. Acta. Math. 1991, 167, 107–126. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 2014, 58, 133–154. [Google Scholar] [CrossRef]
- Ros-Oton, X.; Serra, J. The Dirichlet problem for the fractional Laplacion: Regularity up to the boundary. J. Math. Pures Appl. 2014, 101, 275–302. [Google Scholar] [CrossRef]
- Brasco, L.; Parini, E. The second eigenvalue of the fractional p-Laplacain. Adv. Calc. Var. 2016, 9, 323–355. [Google Scholar] [CrossRef]
- Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order; Reprint of the 1998 edition. Classics in Mathematics; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Di Castro, A.; Kuusi, T.; Palatucci, G. Local behavior of fractional p-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 2016, 33, 1279–1299. [Google Scholar] [CrossRef]
- Di Castro, A.; Kuusi, T.; Palatucci, G. Nonlocal Harnack inequalities. J. Func. Anal. 2014, 267, 1807–1836. [Google Scholar] [CrossRef]
- Garain, P.; Kinnunen, J. On the regularity theory for mixed local and nonlocal quasilinear elliptic equations. Trans. Amer. Math. Soc. 2022, 375, 5393–5423. [Google Scholar] [CrossRef]
- Brasco, L.; Lindgren, E.; Parini, E. The fractional Cheeger problem. Interfaces Free Bound. 2014, 16, 419–458. [Google Scholar] [CrossRef]
- Grisvard, P. Elliptic Problems in Nonsmooth Domains. In Monographs and Studies in Mathematics; Pitman: Boston, MA, USA, 1985; Volume 21. [Google Scholar]
- Aronszajn, N. Boundary values of functions with finite Dirichlet integral. Tech. Rep. Univ. Kans. 1955, 14, 77–94. [Google Scholar]
- Gagliardo, E. Proprietà di alcune classi di funzion in più variabili. Ric. Mat. 1958, 7, 102–137. [Google Scholar]
- Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Slobodeckij, L.N. Generalized Sobolev spaces and their applications to boundary value problems of partial differential equations, Leningrad. Gos. Ped. Inst. Učep. Zap. 1958, 197, 54–112. [Google Scholar]
- Stein, E.M. Singular Integrals and Differentiability Properties of Functions; Princeton Mathematical Series; Princeton University Press: Princeton, NJ, USA, 1970; Volume 30. [Google Scholar]
- Demengel, F.; Demengel, G. Functional Spaces for the Theory of Elliptic Partial Differential Equations; EDP Sciences; Springer: London, UK, 2012. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, L.; Zhou, C. Global Boundedness of Weak Solutions to Fractional Nonlocal Equations. Mathematics 2025, 13, 2612. https://doi.org/10.3390/math13162612
Li Z, Wang L, Zhou C. Global Boundedness of Weak Solutions to Fractional Nonlocal Equations. Mathematics. 2025; 13(16):2612. https://doi.org/10.3390/math13162612
Chicago/Turabian StyleLi, Zhenjie, Lihe Wang, and Chunqin Zhou. 2025. "Global Boundedness of Weak Solutions to Fractional Nonlocal Equations" Mathematics 13, no. 16: 2612. https://doi.org/10.3390/math13162612
APA StyleLi, Z., Wang, L., & Zhou, C. (2025). Global Boundedness of Weak Solutions to Fractional Nonlocal Equations. Mathematics, 13(16), 2612. https://doi.org/10.3390/math13162612