Valuation of Euro-Convertible Bonds in a Markov-Modulated, Cox–Ingersoll–Ross Economy
Abstract
1. Introduction
2. Model Framework and Pricing Method
2.1. Euro-Convertible Bond Price Modeling
2.2. Least-Squares Monte Carlo Approach
3. Fair Valuation of Euro-Convertible Bonds
3.1. Risk-Neutral MMCJD-MMCIR Dynamics
3.2. Valuing Euro-Convertible Bonds Under the MMCJD-MMCIR Model
4. Numerical Illustrations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Pseudo-Code on ECB Valuation Using LSMC
Step 1: Initialization dt = T/N Generate an M-by-N matrix S(path, t), X(path, t), rd(path, t), and rf(path, t) of simulated stock prices, exchange rate, domestic risk free rate, and foreign risk-free rate. Step 2: Monte Carlo simulation of stock prices for path = 1 to M: S(path, 1) = S0 X(path, 1) = X0 rd(path, 1) = rd0 rf(path,1) = rf0 for t = 1 to N: simulate S(path, t + 1), X(path, t + 1), rd(path, t + 1), and rf(path,1) under MMCJD-MMCIR model dynamics end end Step 3: Calculate ECB payoffs at maturity (t = N) for path = 1 to M: Payoff(path, N) = conversion ratio * S(path, N)/X(path, N) end Step 4: Backward induction and regression (LSMC core step) for t = N−1 down to 1: //Compute immediate conversion payoff for path = 1 to M: Immediate_Conversion(path) = conversion ratio * S(path, t)/X(path, t) end //Identify in-the-money paths (where conversion is favorable) ITM_paths = {path | S(path,t) > conversion price} //Regression to estimate the continuation (holding) value Regress Payoff(ITM_paths, t + 1) * (Discounting Factor) against basis functions: e.g., [1, S(path, t), X(path, t)] (polynomial basis functions) Obtain fitted values Continuation_Value(path, t) for all ITM_paths //Optimal decision: hold or convert at each path for each path in ITM_paths: if Immediate_Exercise(path) > Continuation_Value(path, t): Payoff(path, t) = Immediate_Exercise(path) else: Payoff(path, t) = Payoff(path, t + 1) * (Discounting Factor) end end end Step 5: Valuation at t = 0 Convertible_Bond_Value = average(Payoff(path, 1)) * (Discounting Factor) |
References
- Rigobon, R.; Sack, B. Measuring the reaction of monetary policy to the stock market. Q. J. Econ. 2003, 118, 639–669. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Y.; Wang, Z. The stock-bond correlation and macroeconomic conditions: One and a half centuries of evidence. J. Bank. Financ. 2009, 33, 670–680. [Google Scholar] [CrossRef]
- Bianconi, M.; Yoshino, J.; Machado de Sousa, M.O. BRIC and the US financial crisis: An empirical investigation of stock and bond markets. Emerg. Mark. Rev. 2013, 14, 76–109. [Google Scholar] [CrossRef]
- Bautista, C.C. Interest rate-exchange rate dynamics in the Philippines: A DCC analysis. Appl. Econ. Lett. 2003, 10, 107–111. [Google Scholar] [CrossRef]
- Sanchez, M. The link between interest rates and exchange rates: Do contractionary depreciations make a difference? Int. Econ. J. 2008, 22, 43–61. [Google Scholar] [CrossRef]
- Lothian, J.R.; Wu, L. Uncovered interest-rate parity over the past two centuries. J. Int. Money Financ. 2011, 30, 448–473. [Google Scholar] [CrossRef]
- Soenen, L.A.; Hennigar, E.S. An analysis of exchange rates and stock prices: The U.S. experience between 1980 and 1986. Akron. Bus. Econ. Rev. 1988, 19, 7–16. [Google Scholar]
- Lee, C.H.; Doong, S.C.; Chou, P.I. Dynamic correlation between stock prices and exchange rates. Appl. Financ. Econ. 2011, 21, 789–800. [Google Scholar] [CrossRef]
- Yang, Z.; Tu, A.H.; Zeng, Y. Dynamic linkages between Asian stock prices and exchange rates: New evidence from causality in quantiles. Appl. Econ. 2014, 46, 1184–1201. [Google Scholar] [CrossRef]
- Andersen, T.G.; Bollerslev, T.; Diebold, X.; Vega, C. Real-time price discovery in global stock, bond and foreign exchange markets. J. Int. Econ. 2007, 73, 251–277. [Google Scholar] [CrossRef]
- Dungey, M.; McKenzie, M.; Smith, V. News, no-news and jumps in the US treasury market. J. Empir. Financ. 2009, 16, 430–445. [Google Scholar] [CrossRef]
- Lahaye, L.; Laurent, S.; Neely, C. Jumps, cojumps and macro announcements. J. Appl. Econom. 2011, 26, 893–921. [Google Scholar] [CrossRef]
- Lian, Y.M.; Chen, J.H. Portfolio selection in a multi-asset, incomplete-market economy. Q. Rev. Econ. Financ. 2019, 71, 228–238. [Google Scholar] [CrossRef]
- Lian, Y.M.; Chen, J.H. Joint dynamic modeling and option pricing in incomplete derivative-security market. North. Am. J. Econ. Financ. 2020, 51, 100845. [Google Scholar] [CrossRef]
- Ingersoll, J.E. A contingent-claims valuation of convertible securities. J. Financ. Economics 1977, 4, 289–321. [Google Scholar] [CrossRef]
- Ingersoll, J.E. An examination of corporate call policies on convertible securities. J. Financ. 1977, 32, 463–478. [Google Scholar] [CrossRef]
- Brennan, M.J.; Schwartz, E.S. Convertible bonds: Valuation and optimal strategies for call and conversion. J. Financ. 1977, 32, 1699–1715. [Google Scholar] [CrossRef]
- Brennan, M.J.; Schwartz, E.S. Analyzing Convertible Bonds. J. Financ. Quant. Anal. 1980, 15, 907–929. [Google Scholar] [CrossRef]
- Carayannopoulos, P. Valuing convertibl bonds under the assumption of stochastic interest rates: An empirical investigation. Q. J. Bus. Econ. 1996, 35, 17–31. [Google Scholar]
- Cox, J.C.; Ingersoll, J.E.; Ross, S.A. A theory of the term structure of interest rates. Econometrica 1985, 53, 385–407. [Google Scholar] [CrossRef]
- Duffie, D.; Singleton, K.J. Modeling term structures of defaultable bonds. Rev. Financ. Stud. 1999, 12, 687–720. [Google Scholar] [CrossRef]
- Carayannopoulos, P.; Kalimipalli, M. Convertible bond prices and inherent biases. J. Fixed Income 2003, 13, 64–73. [Google Scholar] [CrossRef]
- Ammann, M.; Kind, A.; Wilde, C. Are convertible bonds underpriced? An analysis of the French market. J. Bank. Financ. 2003, 27, 635–653. [Google Scholar] [CrossRef]
- Ammann, M.; Kind, A.; Wilde, C. Simulation-based pricing of convertible bonds. J. Empir. Financ. 2008, 15, 310–331. [Google Scholar] [CrossRef]
- Cox, J.C.; Ross, S.A.; Rubinstein, M. Option pricing: A simplified approach. J. Financ. Econ. 1979, 7, 229–263. [Google Scholar] [CrossRef]
- Brennan, M.J.; Schwartz, E.S. The valuation of American put options. J. Financ. 1977, 32, 449–462. [Google Scholar] [CrossRef]
- Hull, J.; White, A. Valuing derivative securities using the explicit finite difference method. J. Financ. Quant. Anal. 1990, 25, 87–100. [Google Scholar] [CrossRef]
- Boyle, P.; Broadie, M.; Glasserman, P. Monte Carlo methods for security pricing. J. Econ. Dyn. Control. 1997, 21, 1267–1321. [Google Scholar] [CrossRef]
- Gaß, M.; Glau, K.; Mahlstedt, M.; Mair, M. Chebyshev interpolation for parametric option pricing. Financ. Stoch. 2018, 22, 701–731. [Google Scholar] [CrossRef]
- Matsakos, T.; Nield, S. Quantum Monte Carlo simulations for financial risk analytics: Scenario generation for equity, rate, and credit risk factors. Quantum 2024, 8, 1306. [Google Scholar] [CrossRef]
- Longstaff, F.A.; Schwartz, E.S. Valuing American options by simulation: A simple least-squares approach. Rev. Financ. Stud. 2001, 14, 113–147. [Google Scholar] [CrossRef]
- Malyscheff, A.M.; Trafalis, T.B. Natural gas storage valuation via least squares Monte Carlo and support vector regression. Energy Syst. 2017, 8, 815–855. [Google Scholar] [CrossRef]
- Stepniak, P.; Palmowski, Z. Pricing time-capped American options using Least Squares Monte Carlo method. arXiv 2025, arXiv:2503.01040. [Google Scholar] [CrossRef]
- Merton, R.C. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 1976, 3, 125–144. [Google Scholar] [CrossRef]
- Kou, S.G. A jump-diffusion mode for option pricing. Manag. Sci. 2002, 48, 1086–1101. [Google Scholar] [CrossRef]
- Hamilton, J.D. A new approach to the economic analysis of nonstationarytime series and the business cycle. Econometrica 1989, 57, 357–384. [Google Scholar] [CrossRef]
- Hardy, M.R. A regime-switching model of long-term stock returns. N. Am. Actuar. J. 2001, 5, 41–53. [Google Scholar] [CrossRef]
- Elliott, R.J.; Chan, L.; Siu, T.K. Option pricing and Esscher transform under regime switching. Ann. Financ. 2005, 1, 423–432. [Google Scholar] [CrossRef]
- Lian, Y.M.; Liao, S.L.; Chen, J.H. State-dependent jump risks for American gold futures option pricing. N. Am. J. Econ. Financ. 2015, 33, 115–133. [Google Scholar] [CrossRef]
Parameter Name | Value in Boom State | Value in Recession State |
---|---|---|
CIR domestic initial interest rate (rd) | 0.02 | 0.01 |
CIR foreign initial interest rate (rf) | 0.03 | 0.015 |
Stock price volatility (σS) | 0.2 | 0.1 |
FX rate volatility (σX) | 0.3 | 0.2 |
Idiosyncratic jump intensity of S (λS) | 4 | 2 |
Idiosyncratic jump intensity of X (λX) | 6 | 3 |
Cojump intensity of S and X (λC) | 2 | 1 |
Jump amplitude of stock price (uS) | 0.002 | 0.002 |
Jump amplitude of FX rate (uX) | 0.001 | 0.001 |
Volatility of stock price jump (δS) | 0.01 | 0.01 |
Volatility of FX rate jump (δX) | 0.02 | 0.02 |
Initial stock price (S (0)) | 100 | 100 |
Initial FX rate (X(0)) | 32 | 32 |
Correlation coefficient between S and X (rSX) | 0.001 | 0.001 |
Correlation coefficient between S and rd (rSd) | 0.002 | 0.002 |
Correlation coefficient between S and rf (rSf) | 0.003 | 0.003 |
Correlation coefficient between X and rd (rXd) | 0.0015 | 0.0015 |
Correlation coefficient between X and rf (rXf) | 0.002 | 0.002 |
Correlation coefficient between rd and rf (rdf) | 0.003 | 0.003 |
CIR domestic interest rate volatility (σd) | 0.0015 | 0.001 |
CIR foreign interest rate volatility (σf) | 0.002 | 0.001 |
CIR mean-reverting rate of domestic interest rate (kd) | 0.04 | 0.02 |
CIR mean-reverting rate of foreign interest rate (kf) | 0.03 | 0.015 |
CIR domestic long-term average interest rate (ad) | 0.06 | 0.03 |
CIR foreign long-term average interest rate (af) | 0.05 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, Y.-M.; Chen, J.-H.; Liao, S.-L. Valuation of Euro-Convertible Bonds in a Markov-Modulated, Cox–Ingersoll–Ross Economy. Mathematics 2025, 13, 2075. https://doi.org/10.3390/math13132075
Lian Y-M, Chen J-H, Liao S-L. Valuation of Euro-Convertible Bonds in a Markov-Modulated, Cox–Ingersoll–Ross Economy. Mathematics. 2025; 13(13):2075. https://doi.org/10.3390/math13132075
Chicago/Turabian StyleLian, Yu-Min, Jun-Home Chen, and Szu-Lang Liao. 2025. "Valuation of Euro-Convertible Bonds in a Markov-Modulated, Cox–Ingersoll–Ross Economy" Mathematics 13, no. 13: 2075. https://doi.org/10.3390/math13132075
APA StyleLian, Y.-M., Chen, J.-H., & Liao, S.-L. (2025). Valuation of Euro-Convertible Bonds in a Markov-Modulated, Cox–Ingersoll–Ross Economy. Mathematics, 13(13), 2075. https://doi.org/10.3390/math13132075