Quantum Entanglement Between Charge Qubit and Mechanical Cat-States in Nanoelectromechanical System
Abstract
:1. Introduction
2. Description of the SC NEMS Setup
3. Approximative Analytical Solution
4. Numerical Simulations
4.1. Physical Parameters of the System
4.2. Validity of the RWA Approximation
4.3. The Off-Resonance Effects
4.4. Deviation from the Voltage Flip Condition
4.5. Realistic Modelling of the Voltage Flip
4.6. Decoherence Effects
4.6.1. Effect of the Phonon Loss
4.6.2. Effect of the Qubit State Flipping
4.6.3. Effect of Combined Qubit State Flipping and Phonon Loss
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Eigenstate Probabilities
References
- Schumacher, B. Quantum coding. Phys. Rev. A 1995, 51, 2738. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-1-107-00217-3. [Google Scholar]
- Bergou, J.A.; Hillery, M.; Saffman, M. Quantum Information Processing: Theory and Implementation; Graduate Texts in Physics; Springer: Cham, Switzerland, 2021; ISBN 978-3-030-75435-8. [Google Scholar] [CrossRef]
- Blais, A.; Girvin, S.M.; Oliver, W.D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 2020, 16, 247–256. [Google Scholar] [CrossRef]
- Martinis, J.M.; Devoret, M.H.; Clarke, J. Quantum Josephson junctions and the dawn of artificial atoms. Nat. Phys. 2020, 16, 234. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Sipahigil, A.; Kalaee, M.; Painter, O. Superconducting qubit to optical photon transduction. Nature 2020, 588, 599–603. [Google Scholar] [CrossRef]
- Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 2003, 75, 281–324. [Google Scholar] [CrossRef]
- Orlando, T.P.; Mooij, J.E.; Tian, L.; van der Wal, C.H.; Levitov, L.S.; Lloyd, S.; Mazo, J.J. Superconducting persistent-current qubit. Phys. Rev. B 1999, 60, 15398. [Google Scholar] [CrossRef]
- Koch, J.; Yu, T.M.; Gambetta, J.; Houck, A.A.; Schuster, D.I.; Majer, J.; Blais, A.; Devoret, M.H.; Girvin, S.M.; Schoelkopf, R.J. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 2007, 76, 042319. [Google Scholar] [CrossRef]
- Schreier, J.A.; Houck, A.A.; Koch, J.; Schuster, D.I.; Johnson, B.R.; Chow, J.M.; Gambetta, J.M.; Majer, J.; Frunzio, L.; Devoret, M.H.; et al. Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 2008, 77, 180502. [Google Scholar] [CrossRef]
- Bouchiat, V.; Vion, D.; Joyez, P.; Esteve, D.; Devoret, M.H. Quantum coherence with a single Cooper pair. Phys. Scr. 1998, T76, 165–170. [Google Scholar] [CrossRef]
- Nakamura, Y.; Pashkin, Y.; Tsai, J. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 1999, 398, 786–788. [Google Scholar] [CrossRef]
- Matveev, K.A.; Gisselfält, M.; Glazman, L.I.; Jonson, M.; Shekhter, R.I. Parity-induced suppression of the Coulomb blockade of Josephson tunneling. Phys. Rev. Lett. 1993, 70, 2940. [Google Scholar] [CrossRef]
- Lehnert, K.W.; Bladh, K.; Spietz, L.F.; Gunnarsson, D.; Schuster, D.I.; Delsing, P.; Schoelkopf, R.J. Measurement of the Excited-State Lifetime of a Microelectronic Circuit. Phys. Rev. Lett. 2003, 90, 027002. [Google Scholar] [CrossRef]
- Laird, E.A.; Pei, F.; Tang, W.; Steele, G.A.; Kouwenhoven, L.P. A high quality factor carbon nanotube mechanical resonator at 39 GHz. Nano Lett. 2012, 12, 193–197. [Google Scholar] [CrossRef]
- Tao, Y.; Boss, J.M.; Moores, B.A.; Degen, C.L. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 2014, 5, 3638. [Google Scholar] [CrossRef]
- Bereyhi, M.J.; Arabmoheghi, A.; Beccari, A.; Fedorov, S.A.; Huang, G.; Kippenberg, T.J.; Engelsen, N.J. Perimeter Modes of Nanomechanical Resonators Exhibit Quality Factors Exceeding 109 at Room Temperature. Phys. Rev. X 2022, 12, 021036. [Google Scholar] [CrossRef]
- Bienfait, A.; Satzinger, K.J.; Zhong, Y.P.; Chang, H.-S.; Chou, M.-H.; Conner, C.R.; Dumur, É.; Grebel, J.; Peairs, G.A.; Povey, R.G.; et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 2019, 364, 368–371. [Google Scholar] [CrossRef]
- Satzinger, K.J.; Zhong, Y.P.; Chang, H.-S.; Peairs, G.A.; Bienfait, A.; Chou, M.-H.; Cleland, A.Y.; Conner, C.R.; Dumur, É.; Grebel, J.; et al. Quantum control of surface acoustic-wave phonons. Nature 2018, 563, 661–665. [Google Scholar] [CrossRef]
- Vlastakis, B.; Kirchmair, G.; Leghtas, Z.; Nigg, S.E.; Frunzio, L.; Girvin, S.M.; Mirrahimi, M.; Devoret, M.H.; Schoelkopf, R.J. Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States. Science 2013, 342, 607–610. [Google Scholar] [CrossRef]
- Ma, S.-L.; Li, Z.; Fang, A.-P.; Li, P.-B.; Gao, S.-Y.; Li, F.-L. Controllable generation of two-mode-entangled states in two-resonator circuit QED with a single gap-tunable superconducting qubit. Phys. Rev. A 2014, 90, 062342. [Google Scholar] [CrossRef]
- Roy, A.; Leghtas, Z.; Stone, A.D.; Devoret, M.H.; Mirrahimi, M. Continuous generation and stabilization of mesoscopic field superposition states in a quantum circuit. Phys. Rev. A 2015, 91, 013810. [Google Scholar] [CrossRef]
- Leghtas, Z.; Touzard, S.; Pop, I.M.; Kou, A.; Vlastakis, B.; Petrenko, A.; Sliwa, K.M.; Narla, A.; Shankar, S.; Hatridge, M.J.; et al. Confining the state of light to a quantum manifold by engineered two-photon loss. Science 2015, 347, 853–857. [Google Scholar] [CrossRef]
- Ma, S.-L.; Xie, J.-K.; Li, F.-L. Generation of superposition coherent states of microwave fields via dissipation of a superconducting qubit with broken inversion symmetry. Phys. Rev. A 2019, 99, 022302. [Google Scholar] [CrossRef]
- Liao, J.-Q.; Huang, J.-F.; Tian, L. Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems. Phys. Rev. A 2016, 93, 033853. [Google Scholar] [CrossRef]
- Hacker, B.; Welte, S.; Daiss, S.; Shaukat, A.; Ritter, S.; Li, L.; Rempe, G. Deterministic creation of entangled atom-light Schrödinger-cat states. Nat. Photonics 2019, 13, 110–115. [Google Scholar] [CrossRef]
- Armour, A.D.; Blencowe, M.P.; Schwab, K.C. Entanglement and Decoherence of a Micromechanical Resonator via Coupling to a Cooper-Pair Box. Phys. Rev. Lett. 2002, 88, 148301. [Google Scholar] [CrossRef]
- Voje, A.; Kinaret, J.M.; Isacsson, A. Generating macroscopic superposition states in nanomechanical graphene resonators. Phys. Rev. B 2012, 85, 205415. [Google Scholar] [CrossRef]
- Xiong, B.; Li, X.; Chao, S.L.; Yang, Z.; Zhang, W.Z.; Zhou, L. Generation of entangled Schrödinger cat state of two macroscopic mirrors. Opt. Express 2019, 27, 13547–13558. [Google Scholar] [CrossRef]
- Hou, Q.; Yang, W.; Chen, C.; Yin, Z. Generation of macroscopic Schrödinger cat state in diamond mechanical resonator. Sci. Rep. 2016, 6, 37542. [Google Scholar] [CrossRef]
- Radić, D.; Choi, S.J.; Park, H.C.; Suh, J.; Shekhter, R.I.; Gorelik, L.Y. Nanomechanical cat states generated by a dc voltage-driven Cooper pair box qubit. npj Quantum Inf. 2022, 8, 74. [Google Scholar] [CrossRef]
- Radić, D.; Gorelik, L.Y.; Kulinich, S.I.; Shekhter, R.I. Transduction of quantum information from charge qubit to nanomechanical cat-state. Phys. B Condens. Matter 2023, 665, 415049. [Google Scholar] [CrossRef]
- Schneider, B.H.; Etaki, S.; van der Zant, H.S.J.; Steele, G.A. Coupling carbon nanotube mechanics to a superconducting circuit. Sci. Rep. 2012, 2, 599. [Google Scholar] [CrossRef] [PubMed]
- Hann, C.T.; Zou, C.-L.; Zhang, Y.; Chu, Y.; Schoelkopf, R.J.; Girvin, S.M.; Jiang, L. Hardware-Efficient Quantum Random Access Memory with Hybrid Quantum Acoustic Systems. Phys. Rev. Lett. 2019, 123, 250501. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Kharel, P.; Yoon, T.; Frunzio, L.; Rakich, P.T.; Schoelkopf, R.J. Creation and control of multi-phonon Fock states in a bulk acoustic wave resonator. Nature 2018, 563, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef]
- Gorelik, L.Y.; Isacsson, A.; Galperin, Y.M.; Shekhter, R.I.; Jonson, M. Coherent transfer of Cooper pairs by a movable grain. Nature 2001, 411, 454–457. [Google Scholar] [CrossRef]
- Isacsson, A.; Gorelik, L.Y.; Shekhter, R.I.; Galperin, Y.M.; Jonson, M. Mechanical Cooper Pair Transportation as a Source of Long-Distance Superconducting Phase Coherence. Phys. Rev. Lett. 2002, 89, 277002. [Google Scholar] [CrossRef]
- Case, W.B. Wigner functions and Weyl transforms for pedestrians. Am. J. Phys. 2008, 76, 937–946. [Google Scholar] [CrossRef]
- See catalogues of commercially available voltage sources, e.g., Keysight B2961A manufactured by the Keysight Technologies.
- Peng, H.B.; Chang, C.W.; Aloni, S.; Yuzvinsky, T.D.; Zettl, A. Ultrahigh Frequency Nanotube Resonators. Phys. Rev. Lett. 2006, 97, 087203. [Google Scholar] [CrossRef]
- De Franceschi, S.; Kouwenhoven, L.; Schönenberger, C.; Wernsdorfer, W. Hybrid superconductor–quantum dot devices. Nat. Nanotechnol. 2010, 5, 703–711. [Google Scholar] [CrossRef]
- Ming, X.; Huang, H.; Zorman, C.A.; Mehregany, M.; Roukes, M.L. Nanodevice motion at microwave frequencies. Nature 2003, 421, 496. [Google Scholar]
- Masuda, K.; Moriyama, S.; Morita, Y.; Komatsu, K.; Takagi, T.; Hashimoto, T.; Miki, N.; Tanabe, T.; Maki, H. Thermal and quantum phase slips in niobium-nitride nanowires based on suspended carbon nanotubes. Appl. Phys. Lett. 2016, 108, 222601. [Google Scholar] [CrossRef]
- Eriksson, A.M.; Vikström, A. Zero-Phase-Difference Josephson Current Based on Spontaneous Symmetry Breaking via Parametric Excitation of a Movable Superconducting Dot. Phys. Rev. Lett. 2017, 118, 197701. [Google Scholar] [CrossRef] [PubMed]
- Amico, L.; Fazio, R.; Osterloh, A.; Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 2008, 80, 517–576. [Google Scholar] [CrossRef]
- Radić, D.; Gorelik, L.Y.; Kulinich, S.I.; Shekhter, R.I. Nanomechanical manipulation of superconducting charge-qubit quantum networks. Phys. B Condens. Matter 2024, 684, 415988. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tečer, M.; Radić, D. Quantum Entanglement Between Charge Qubit and Mechanical Cat-States in Nanoelectromechanical System. Mathematics 2025, 13, 2054. https://doi.org/10.3390/math13132054
Tečer M, Radić D. Quantum Entanglement Between Charge Qubit and Mechanical Cat-States in Nanoelectromechanical System. Mathematics. 2025; 13(13):2054. https://doi.org/10.3390/math13132054
Chicago/Turabian StyleTečer, Matija, and Danko Radić. 2025. "Quantum Entanglement Between Charge Qubit and Mechanical Cat-States in Nanoelectromechanical System" Mathematics 13, no. 13: 2054. https://doi.org/10.3390/math13132054
APA StyleTečer, M., & Radić, D. (2025). Quantum Entanglement Between Charge Qubit and Mechanical Cat-States in Nanoelectromechanical System. Mathematics, 13(13), 2054. https://doi.org/10.3390/math13132054