The nth Prime Exponentially
Abstract
:1. Introduction: Known Bounds on
2. Some Elementary Variants on These Bounds
3. Exponentially Bounding the Prime Number Theorem
4. Localizing the Prime Number
5. Special Case
6. Further Developments
7. For the Future
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trudgian, T. Updating the error term in the prime number theorem. Ramanujan J. 2016, 39, 225–236. [Google Scholar] [CrossRef]
- Johnston, D.R.; Yang, A. Some explicit estimates for the error term in the prime number theorem. J. Math. Anal. Appl. 2023, 527, 127460. [Google Scholar] [CrossRef]
- Fiori, A.; Kadiri, H.; Swindisky, J. Sharper bounds for the error term in the Prime Number Theorem. Res. Number Theory 2023, 9, 63. [Google Scholar] [CrossRef]
- Visser, M. Effective de la Vallé Poussin style bounds on the first Chebyshev function. Int. Math. Forum 2023, 18, 133–139. [Google Scholar] [CrossRef]
- de la Poussin, C.J.V. Recherches Analytiques Sur La Théorie Des Nombres Premiers; Hayez: Bruxelles, Belgium, 1896; Volume 20, pp. 183–256. [Google Scholar]
- Rosser, J.B.; Schoenfeld, L. Approximate formulas for some functions of prime numbers. Illinois J. Math. 1962, 6, 64–94. [Google Scholar] [CrossRef]
- Nagura, J. On The Interval Containing At Least One Prime Number. Proc. Jpn. Acad. 1952, 28, 177–181. [Google Scholar] [CrossRef]
- Rosser, J.B. The n-th Prime is Greater than nlogn. Proc. Lond. Math. Soc. 1939, 45, 21–44. [Google Scholar] [CrossRef]
- Rosser, J.B. Explicit bounds for some functions of prime numbers. Am. J. Math. 1941, 63, 211–232. [Google Scholar] [CrossRef]
- de Reyna, J.A.; Jeremy, T. The n-th prime asymptotically. J. Theor. Nr. Bordx. 2013, 25, 521–555. [Google Scholar] [CrossRef]
- Visser, M. Effective exponential bounds on the prime gaps. Int. Math. Forum 2025, 20, 23–31. [Google Scholar] [CrossRef]
a | b | c | Source | Notes | |
---|---|---|---|---|---|
0.4394 | −3/4 | 0.32115 | 59 | Trudgian [1] | Equation (7) |
0.2795 | −3/4 | 0.3936 | 229 | Trudgian [1] | Th 2 |
9.2211 | 1/2 | 0.8476 | 2 | Fiori–Kadiri–Swidinsky [3] | Equations (3) and (43) |
9.59 | 0.515 | 0.8274 | 2 | Johnston–Yang [2] | Equation (1.6) |
a | b | c | ||||||
---|---|---|---|---|---|---|---|---|
0.4394 | −3/4 | 0.32115 | 59 | 0.4680 | −7/8 | 1/4 | 203,931 | 41 |
0.4394 | −3/4 | 0.32115 | 59 | 0.4795 | −1 | 1/6 | 35,439 | 41 |
0.2795 | −3/4 | 0.3936 | 229 | 0.2804 | −5/6 | 1/3 | 2097 | 227 |
0.2795 | −3/4 | 0.3936 | 229 | 0.3164 | −1 | 1/4 | 184,165 | 223 |
9.2211 | 1/2 | 0.8476 | 2 | 9.7590 | 0 | 1/2 | 3930 | 2 |
9.2211 | 1/2 | 0.8476 | 2 | 11.9026 | −1/2 | 1/5 | 13,874 | 2 |
9.2211 | 1/2 | 0.8476 | 2 | 29.6698 | −1 | 1/10 | 9,849,130 | 2 |
9.59 | 0.515 | 0.8274 | 2 | 11.148 | 0 | 1/2 | 19,877 | 2 |
9.59 | 0.515 | 0.8274 | 2 | 13.659 | −1/2 | 1/5 | 35,206 | 2 |
9.59 | 0.515 | 0.8274 | 2 | 34.955 | −1 | 1/10 | 34,331,213 | 2 |
a | b | c | |
---|---|---|---|
3/4 | −3/4 | 0.32115 | 2 |
7/8 | −7/8 | 0.32115 | 2 |
0.93 | −1 | 0.32115 | 2 |
0.8935 | −3/4 | 0.3936 | 2 |
0.94 | −7/8 | 0.3936 | 2 |
1.05 | −1 | 0.3936 | 2 |
a | b | c | ||||||
---|---|---|---|---|---|---|---|---|
0.4394 | −3/4 | 0.32115 | 59 | 11.3 | 41 | 17 | 5 | 13 |
0.4680 | −7/8 | 1/4 | 41 | e | 37 | 13 | 1 | 12 |
0.4795 | −1 | 1/6 | 41 | 1 | 37 | 13 | 0 | 12 |
0.2795 | −3/4 | 0.3936 | 229 | 5.022 | 149 | 50 | 3 | 35 |
0.2804 | −5/6 | 1/3 | 227 | e | 149 | 49 | 1 | 35 |
0.3164 | −1 | 1/4 | 223 | 1 | 97 | 48 | 0 | 25 |
9.2211 | 1/2 | 0.8476 | 2 | 275,789 | 2 | 1 | 24,104 | 1 |
9.7590 | 0 | 1/2 | 2 | 2 | 1 | 595,341 | 1 | |
11.9026 | −1/2 | 1/5 | 2 | * | 1 | * | ||
29.6698 | −1 | 1/10 | 2 | 1 | 2 | 1 | 0 | 1 |
9.59 | 0.515 | 0.8274 | 2 | 667,161 | 2 | 1 | 54,105 | 1 |
11.148 | 0 | 1/2 | 2 | 2 | 1 | 595,431 | 1 | |
13.659 | −1/2 | 1/5 | 2 | * | 1 | * | ||
34.955 | −1 | 1/10 | 2 | 1 | 2 | 1 | 0 | 1 |
a | b | c | ||||||
---|---|---|---|---|---|---|---|---|
0.4795 | −1 | 1/6 | 41 | 1 | 37 | 13 | 0 | 12 |
0.3164 | −1 | 1/4 | 223 | 1 | 97 | 48 | 0 | 25 |
29.6698 | −1 | 1/10 | 2 | 1 | 2 | 1 | 0 | 1 |
34.955 | −1 | 1/10 | 2 | 1 | 2 | 1 | 0 | 1 |
1 | −1 | 0.32115 | 2 | 1 | 2 | 1 | 0 | 1 |
1.1 | −1 | 0.3936 | 2 | 1 | 2 | 1 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visser, M. The nth Prime Exponentially. Mathematics 2025, 13, 1844. https://doi.org/10.3390/math13111844
Visser M. The nth Prime Exponentially. Mathematics. 2025; 13(11):1844. https://doi.org/10.3390/math13111844
Chicago/Turabian StyleVisser, Matt. 2025. "The nth Prime Exponentially" Mathematics 13, no. 11: 1844. https://doi.org/10.3390/math13111844
APA StyleVisser, M. (2025). The nth Prime Exponentially. Mathematics, 13(11), 1844. https://doi.org/10.3390/math13111844