Does Herding and Anti-Herding Reflect Portfolio Managers’ Abilities in Emerging Markets?
Abstract
:1. Introduction
2. Literature Review and Hypotheses
2.1. Performance and Herding
2.2. Behavior and Ability
2.3. Bull and Bear Market Analysis
2.4. Change Manager
2.5. Herding Likelihood
3. Data
4. Methodology
4.1. Performance and Herding
4.2. Behavior and Ability
4.3. Bull and Bear Market Analysis
4.4. Change Manager
4.5. Herding Likelihood
5. Results
5.1. Performance and Herding
5.2. Behavior and Ability
5.3. Bull and Bear Market Analysis
5.4. Change Manager
5.5. Herding Likelihood
5.6. Summary of Findings and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Renneboog, L.; Ter Horst, J.; Zhang, C. Is ethical money financially smart? Nonfinancial attributes and money flows of socially responsible investment funds. J. Financ. Intermediation 2011, 20, 562–588. [Google Scholar] [CrossRef]
- Müller, S.; Weber, M. Financial literacy and mutual fund investments: Who buys actively managed funds? Schmalenbach Bus. Rev. 2010, 62, 126–153. [Google Scholar] [CrossRef]
- Ivković, Z.; Weisbenner, S. Individual investor mutual fund flows. J. Financ. Econ. 2009, 92, 223–237. [Google Scholar] [CrossRef]
- Del Guercio, D.; Genc, E.; Tran, H. Playing favorites: Conflicts of interest in mutual fund management. J. Financ. Econ. 2018, 128, 535–557. [Google Scholar] [CrossRef]
- Cuthbertson, K.; Nitzsche, D.; O‘Sullivan, N. A review of behavioural and management effects in mutual fund performance. Int. Rev. Financ. Anal. 2016, 44, 162–176. [Google Scholar] [CrossRef]
- Cashman, G.D.; Nardari, F.; Deli, D.N.; Villupuram, S.V. Investor behavior in the mutual fund industry: Evidence from gross flows. J. Econ. Financ. 2014, 38, 541–567. [Google Scholar] [CrossRef]
- Lehmann, B.N.; Modest, D.M. Mutual fund performance evaluation: A comparison of benchmarks and benchmark comparisons. J. Financ. 1987, 42, 233–265. [Google Scholar] [CrossRef]
- Andreu, L.; Puetz, A. Choosing two business degrees versus choosing one: What does it tell about mutual fund managers’ investment behavior? J. Bus. Res. 2017, 75, 138–146. [Google Scholar] [CrossRef]
- Chevalier, J.; Ellison, G. Are some mutual fund managers better than others? Cross-sectional patterns in behavior and performance. J. Financ. 1999, 54, 875–899. [Google Scholar] [CrossRef]
- Golec, J.H. The effects of mutual fund managers’ characteristics on their portfolio performance, risk and fees. Financ. Serv. Rev. 1996, 5, 133–147. [Google Scholar] [CrossRef]
- Kempf, A.; Ruenzi, S.; Thiele, T. Employment risk, compensation incentives, and managerial risk taking: Evidence from the mutual fund industry. J. Financ. Econ. 2009, 92, 92–108. [Google Scholar] [CrossRef]
- Dyakov, T.; Harford, J.; Qiu, B. Better kept in the dark? Portfolio disclosure and agency problems in mutual funds. J. Financ. Quant. Anal. 2022, 57, 1529–1563. [Google Scholar] [CrossRef]
- Li, Z.F.; Patel, S.; Ramani, S. The role of mutual funds in corporate social responsibility. J. Bus. Ethics 2021, 174, 715–737. [Google Scholar] [CrossRef]
- Steen, M.; Moussawi, J.T.; Gjolberg, O. Is there a relationship between Morningstar’s ESG ratings and mutual fund performance? J. Sustain. Financ. Invest. 2020, 10, 349–370. [Google Scholar] [CrossRef]
- Daniel, K.; Grinblatt, M.; Titman, S.; Wermers, R. Measuring mutual fund performance with characteristic-based benchmarks. J. Financ. 1997, 52, 1035–1058. [Google Scholar] [CrossRef]
- Wermers, R. Mutual fund performance: An empirical decomposition into stock-picking talent, style, transactions costs, and expenses. J. Financ. 2000, 55, 1655–1695. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, X.; Zhang, Y. Mutual fund managers’ timing abilities. Pac.-Basin Financ. J. 2017, 44, 80–96. [Google Scholar] [CrossRef]
- Lu, S.; Li, S.; Chen, N. Robust return efficiency and herding behavior of fund managers. Financ. Res. Lett. 2022, 46, 102267. [Google Scholar] [CrossRef]
- Fei, T.; Liu, X. Herding and market volatility. Int. Rev. Financ. Anal. 2021, 78, 101880. [Google Scholar] [CrossRef]
- Xue, W.; He, Z.; Hu, Y. The destabilizing effect of mutual fund herding: Evidence from China. Int. Rev. Financ. Anal. 2023, 88, 102611. [Google Scholar] [CrossRef]
- Xu, N.; Jiang, X.; Chan, K.C.; Wu, S. Analyst herding and stock price crash risk: Evidence from China. J. Int. Financ. Manag. Account. 2017, 28, 308–348. [Google Scholar] [CrossRef]
- Yu, X.; Liu, J.; Lien, D. A new measure of fund window dressing and its application to Chinese mutual fund market. Q. Rev. Econ. Financ. 2023, 89, 63–72. [Google Scholar] [CrossRef]
- Martí-Ballester, C.P. Analysing the financial performance of sustainable development goals-themed mutual funds in China. Sustain. Prod. Consum. 2021, 27, 858–872. [Google Scholar] [CrossRef]
- Yao, J.; Ma, C.; He, W.P. Investor herding behaviour of Chinese stock market. Int. Rev. Econ. Financ. 2014, 29, 12–29. [Google Scholar] [CrossRef]
- Tan, L.; Chiang, T.C.; Mason, J.R.; Nelling, E. Herding behavior in Chinese stock markets: An examination of A and B shares. Pac.-Basin Financ. J. 2008, 16, 61–77. [Google Scholar] [CrossRef]
- Chen, R.; Gao, Z.; Zhang, X.; Zhu, M. Mutual fund managers’ prior work experience and their investment skill. Financ. Manag. 2018, 47, 3–24. [Google Scholar] [CrossRef]
- Berk, J.B.; Van Binsbergen, J.H. Measuring skill in the mutual fund industry. J. Financ. Econ. 2015, 118, 1–20. [Google Scholar] [CrossRef]
- Lee, J.S.; Yen, P.H.; Chan, K.C. Market states and disposition effect: Evidence from Taiwan mutual fund investors. Appl. Econ. 2013, 45, 1331–1342. [Google Scholar] [CrossRef]
- Li, X.; Hou, K. Over-weighting risk factor augmented with mutual fund managers’ social networks. Pac.-Basin Financ. J. 2023, 77, 101914. [Google Scholar] [CrossRef]
- Liang, Q.; Liao, J.; Ling, L. Social interactions and mutual fund portfolios: The role of alumni networks in China. China Financ. Rev. Int. 2022, 12, 433–450. [Google Scholar] [CrossRef]
- Shen, Y.; Mao, X.; Liu, Y. Alumni network, mutual fund herding and information spillover: Evidence from China. Pac.-Basin Financ. J. 2024, 83, 102265. [Google Scholar] [CrossRef]
- Gottesman, A.A.; Morey, M.R. Manager education and mutual fund performance. J. Empir. Financ. 2006, 13, 145–182. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Li, B. The influence of the social networks of fund managers on the herding behavior of SIFs in China. Humanit. Soc. Sci. Commun. 2023, 10, 181. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, S.J. The effects of national culture and behavioral pitfalls on investors’ decision-making: Herding behavior in international stock markets. Int. Rev. Econ. Financ. 2015, 37, 380–392. [Google Scholar] [CrossRef]
- Deng, X.; Hung, S.; Qiao, Z. Mutual fund herding and stock price crashes. J. Bank. Financ. 2018, 94, 166–184. [Google Scholar] [CrossRef]
- Boyson, N.M. Implicit incentives and reputational herding by hedge fund managers. J. Empir. Financ. 2010, 17, 283–299. [Google Scholar] [CrossRef]
- Huang, H.H.; Hung, R.J.; Wang, C.P.; Hsieh, Y.P. Does fund manager herding vary over the business cycle? Appl. Econ. Lett. 2010, 17, 1531–1535. [Google Scholar] [CrossRef]
- Quan, X.; Xiang, C.; Li, D.; Tan, K.J.K. To see is to believe: Corporate site visits and mutual fund herding. Financ. Manag. 2023, 52, 711–740. [Google Scholar] [CrossRef]
- Jiang, H.; Verardo, M. Does herding behavior reveal skill? An analysis of mutual fund performance. J. Financ. 2018, 73, 2229–2269. [Google Scholar] [CrossRef]
- Koch, A. Herd behavior and mutual fund performance. Manag. Sci. 2017, 63, 3849–3873. [Google Scholar] [CrossRef]
- Li, W.; Rhee, G.; Wang, S.S. Differences in herding: Individual vs. institutional investors. Pac.-Basin Financ. J. 2017, 45, 174–185. [Google Scholar] [CrossRef]
- Gupta-Mukherjee, S. When active fund managers deviate from their peers: Implications for fund performance. J. Bank. Financ. 2013, 37, 1286–1305. [Google Scholar] [CrossRef]
- An, L.; Argyle, B. Overselling winners and losers: How mutual fund managers’ trading behavior affects asset prices. J. Financ. Mark. 2021, 55, 100580. [Google Scholar] [CrossRef]
- Lee, J.B.T.; Ma, J.; Margaritis, D.; Yang, W. Is anti-herding always a smart choice? Evidence from mutual funds. Int. Rev. Financ. Anal. 2023, 90, 102824. [Google Scholar] [CrossRef]
- Clarke, A.; Cullen, G.; Gasbarro, D. Mutual fund trades: Asymmetric liquidity preferences and fund performance. J. Financ. Res. 2007, 30, 515–532. [Google Scholar] [CrossRef]
- Greene, J.T.; Hodges, C.W. The dilution impact of daily fund flows on open-end mutual funds. J. Financ. Econ. 2002, 65, 131–158. [Google Scholar] [CrossRef]
- Wang, Y.; Watson, J.; Wickramanayake, J. The global financial crisis and the mutual fund flow–performance relationship. World Econ. 2018, 41, 3172–3193. [Google Scholar] [CrossRef]
- Muñoz, F.; Vicente, R. Hindsight effect: What are the actual cash flow timing skills of mutual fund investors? J. Empir. Financ. 2018, 45, 181–193. [Google Scholar] [CrossRef]
- Choi, D.; Kahraman, B.; Mukherjee, A. Learning about mutual fund managers. J. Financ. 2016, 71, 2809–2860. [Google Scholar] [CrossRef]
- Wermers, R. Mutual fund herding and the impact on stock prices. J. Financ. 1999, 54, 581–622. [Google Scholar] [CrossRef]
- Berk, J.B.; Green, R.C. Mutual fund flows and performance in rational markets. J. Political Econ. 2004, 112, 1269–1295. [Google Scholar] [CrossRef]
- Kacperczyk, M.; Nieuwerburgh, S.V.; Veldkamp, L. Time-varying fund manager skill. J. Financ. 2014, 69, 1455–1484. [Google Scholar] [CrossRef]
- Celiker, U.; Chowdhury, J.; Sonaer, G. Do mutual funds herd in industries? J. Bank. Financ. 2015, 52, 1–16. [Google Scholar] [CrossRef]
- Raddatz, C.; Schmukler, S.L. Deconstructing herding: Evidence from pension fund investment behavior. J. Financ. Serv. Res. 2013, 43, 99–126. [Google Scholar] [CrossRef]
- Hudson, Y.; Yan, M.; Zhang, D. Herd behaviour & investor sentiment: Evidence from UK mutual funds. Int. Rev. Financ. Anal. 2020, 71, 101494. [Google Scholar] [CrossRef]
- Liao, T.L.; Huang, C.J.; Wu, C.Y. Do fund managers herd to counter investor sentiment? J. Bus. Res. 2011, 64, 207–212. [Google Scholar] [CrossRef]
- Shrider, D.G. Running from a bear: How poor stock market performance affects the determinants of mutual fund flows. J. Bus. Financ. Account. 2009, 36, 987–1006. [Google Scholar] [CrossRef]
- Popescu, M.; Xu, Z. Market states and mutual fund risk shifting. Manag. Financ. 2017, 43, 828–838. [Google Scholar] [CrossRef]
- D’Arcangelis, A.M.; Rotundo, G. Herding in mutual funds: A complex network approach. J. Bus. Res. 2021, 129, 679–686. [Google Scholar] [CrossRef]
- Lee, C.C.; Chen, M.P.; Hsieh, K.M. Industry herding and market states: Evidence from Chinese stock markets. Quant. Financ. 2013, 13, 1091–1113. [Google Scholar] [CrossRef]
- Clare, A.; Motson, N.; Sapuric, S.; Todorovic, N. What impact does a change of fund manager have on mutual fund performance? Int. Rev. Financ. Anal. 2014, 35, 167–177. [Google Scholar] [CrossRef]
- Ghalke, A.; Kulkarni, S. Mutual fund manager turnover: An empirical investigation of performance. Int. J. Manag. Financ. 2022, 18, 869–887. [Google Scholar] [CrossRef]
- Khorana, A. Performance changes following top management turnover: Evidence from open-end mutual funds. J. Financ. Quant. Anal. 2001, 36, 371–393. [Google Scholar] [CrossRef]
- Andreu, L.; Sarto, J.L.; Serrano, M. Implications of manager replacement: Evidence from the Spanish mutual fund industry. Appl. Econ. 2015, 47, 1366–1387. [Google Scholar] [CrossRef]
- Moreno, D.; Rodriguez, R.; Zambrana, R. Management sub-advising in the mutual fund industry. J. Financ. Econ. 2018, 127, 567–587. [Google Scholar] [CrossRef]
- Chou, D.W.; Huang, P.C.; Lai, C.W. New mutual fund managers: Why do they alter portfolios? J. Bus. Res. 2016, 69, 2167–2175. [Google Scholar] [CrossRef]
- Casavecchia, L. Fund managers’ herding and the sensitivity of fund flows to past performance. Int. Rev. Financ. Anal. 2016, 47, 205–221. [Google Scholar] [CrossRef]
- Seok, S.; Cho, H.; Lee, J.E.; Ryu, D. Indirect effects of flow-performance sensitivity on fund performance. Borsa Istanb. Rev. 2023, 23, S1–S14. [Google Scholar] [CrossRef]
- Guo, X.; Gu, C.; Zhang, C.; Li, S. Institutional herding and investor sentiment. J. Financ. Mark. 2024, 68, 100891. [Google Scholar] [CrossRef]
- Chevalier, J.; Ellison, G. Risk taking by mutual funds as a response to incentives. J. Political Econ. 1997, 105, 1167–1200. [Google Scholar] [CrossRef]
- Bailey, W.; Cai, J.; Cheung, Y.L.; Wang, F. Stock returns, order imbalances, and commonality: Evidence on individual, institutional, and proprietary investors in China. J. Bank. Financ. 2009, 33, 9–19. [Google Scholar] [CrossRef]
Variable | Symbol | Variable Treatment |
---|---|---|
Excessive herding | Herd | If the herding index belongs to the higher outlier group measured by 1.5 IQR |
Excessive anti-herding | Anti-herd | If the herding index belongs to the lower outlier group measured by 1.5 IQR |
Moderate herding | HD | The top quarter herding index exclude Herd observations |
Moderate anti-herding | ANHD | The bottom quarter herding index exclude the Anti-herd observations |
Picking score | Picking | Picking score estimated using method mentioned in Section 2 |
Timing | Time score estimated using method mentioned in Section 2 | |
Manager replacement | Change | Dummy variable equals 1 if in that year any manager replacement happened for that fund |
Manager replacement happen in last year | Next | Dummy variable, if manager replacement happened last year, it equals 1 |
Size of the fund | Size | Total assets under management |
Expense ratio | Expense | The yearly expense ratio charged by the fund |
Asset turnover | Turn | The fund asset turnover rate |
Momentum | Mom | The previous year’s Sharpe ratio |
Mutual fund flow | Flow | The net mutual fund flow in that year |
Institutional ownership | Inst | Current institutional ownership percentage |
Age of the fund | Age | Current year minus the year of establishment |
Current performance | Out | The current year performance of the fund minus the CSI 300 index performance |
Statistic | N | Mean | St. Dev. | Min | Pctl(25) | Pctl(75) | Max |
---|---|---|---|---|---|---|---|
Herd | 790 | 0.065 | 0.246 | 0 | 0 | 0 | 1 |
Anti-herd | 790 | 0.082 | 0.275 | 0 | 0 | 0 | 1 |
HD | 790 | 0.246 | 0.431 | 0 | 0 | 0 | 1 |
ANHD | 790 | 0.256 | 0.437 | 0 | 0 | 1 | 1 |
Picking | 790 | 33.006 | 117.895 | −339.429 | −39.336 | 103.756 | 579.775 |
Timing | 790 | −7.759 | 41.006 | −187.001 | −25.219 | 17.174 | 114.441 |
Change | 790 | 0.182 | 0.386 | 0 | 0 | 0 | 1 |
Size | 790 | 1496.782 | 2979.912 | 6.591 | 249.694 | 1497.921 | 34,709.670 |
Expense | 790 | 0.015 | 0.001 | 0.000 | 0.015 | 0.015 | 0.015 |
Turn | 790 | 284.511 | 198.398 | 6.423 | 136.317 | 380.970 | 1343.341 |
Mom | 790 | 0.497 | 1.460 | −2.487 | −0.928 | 1.869 | 3.145 |
Flow | 790 | 15.064 | 126.697 | −89.382 | −26.842 | 9.674 | 2207.388 |
Inst | 790 | 18.671 | 22.855 | 0.000 | 0.332 | 30.735 | 98.490 |
Age | 790 | 6.130 | 2.289 | 2.005 | 4.544 | 7.298 | 18.356 |
Out | 790 | 14.080 | 20.750 | −22.640 | −0.626 | 24.612 | 106.733 |
Dependent Variable: | ||||
---|---|---|---|---|
Current Performance | Future Performance | |||
(1) | (2) | (3) | (4) | |
HD | −0.355 | 2.041 | ||
(0.711) | (1.314) | |||
herd | 1.006 | 1.740 | ||
(1.236) | (2.285) | |||
Size | 0.0002 * | 0.0002 * | −0.0003 * | −0.0003 * |
(0.0001) | (0.0001) | (0.0002) | (0.0002) | |
Expense | −299.540 | −297.210 | 475.495 | 507.456 |
(429.861) | (429.746) | (793.887) | (794.821) | |
Turn | −0.0004 | −0.0001 | 0.002 | 0.001 |
(0.002) | (0.002) | (0.003) | (0.003) | |
Flow | 0.009 *** | 0.009 *** | 0.003 | 0.003 |
(0.003) | (0.003) | (0.005) | (0.005) | |
Mom | 27.164 *** | 27.150 *** | 3.449 *** | 3.511 *** |
(0.690) | (0.690) | (1.275) | (1.275) | |
Age | 0.054 | 0.048 | −0.097 | −0.101 |
(0.169) | (0.169) | (0.312) | (0.312) | |
Inst | −0.061 *** | −0.060 *** | −0.032 | −0.034 |
(0.014) | (0.014) | (0.026) | (0.026) | |
Constant | 38.475 *** | 38.195 *** | 12.022 | 12.335 |
(6.619) | (6.618) | (12.225) | (12.240) | |
Year Control | Y | Y | Y | Y |
Observations | 790 | 790 | 790 | 790 |
R2 | 0.839 | 0.839 | 0.459 | 0.458 |
Adjusted R2 | 0.837 | 0.837 | 0.451 | 0.450 |
Residual Std. Error | 8.381 (df = 777) | 8.378 (df = 777) | 15.478 (df = 777) | 15.496 (df = 777) |
F Statistic | 338.345 *** (df = 12; 777) | 338.560 *** (df = 12; 777) | 55.004 *** (df = 12; 777) | 54.722 *** (df = 12; 777) |
Dependent Variable: | ||||
---|---|---|---|---|
Current Performance | Future Performance | |||
(1) | (2) | (3) | (4) | |
ANHD | −0.669 | −3.147 ** | ||
(0.691) | (1.274) | |||
Anti-herding | −2.237 ** | −5.581 *** | ||
(1.099) | (2.028) | |||
Size | 0.0002 * | 0.0002 * | −0.0003* | −0.0003 |
(0.0001) | (0.0001) | (0.0002) | (0.0002) | |
Expense | −327.670 | −339.478 | 382.246 | 406.671 |
(430.344) | (429.090) | (793.257) | (791.831) | |
Turn | −0.0001 | −0.00001 | 0.002 | 0.002 |
(0.002) | (0.002) | (0.003) | (0.003) | |
Flow | 0.009 *** | 0.010 *** | 0.003 | 0.003 |
(0.003) | (0.003) | (0.005) | (0.005) | |
Mom | 27.142 *** | 27.145 *** | 3.466 *** | 3.498 *** |
(0.689) | (0.688) | (1.271) | (1.270) | |
Age | 0.059 | 0.065 | −0.064 | −0.064 |
(0.169) | (0.168) | (0.311) | (0.311) | |
Inst | −0.060 *** | −0.057 *** | −0.031 | −0.027 |
(0.014) | (0.014) | (0.026) | (0.026) | |
Constant | 38.804 *** | 39.005 *** | 14.685 | 14.222 |
(6.628) | (6.607) | (12.218) | (12.192) | |
Year Control | Y | Y | Y | Y |
Observations | 790 | 790 | 790 | 790 |
R2 | 0.840 | 0.840 | 0.462 | 0.463 |
Adjusted R2 | 0.837 | 0.838 | 0.454 | 0.455 |
Residual Std. Error | 8.377 (df = 777) | 8.360 (df = 777) | 15.441 (df = 777) | 15.427 (df = 777) |
F Statistic | 338.702 *** (df = 12; 777) | 340.366 *** (df = 12; 777) | 55.570 *** (df = 12; 777) | 55.796 *** (df = 12; 777) |
Dependent Variable: | ||||
---|---|---|---|---|
Picking | Timing | |||
(1) | (2) | (3) | (4) | |
HD | 18.602 | −1.494 | ||
(14.920) | (5.526) | |||
Herd | 27.689 | −15.651 | ||
(27.176) | (10.044) | |||
Size | 0.0003 | 0.0003 | 0.0002 | 0.0003 |
(0.001) | (0.001) | (0.001) | (0.001) | |
Expense | 7679.328 | 8483.325 | −621.636 | −876.952 |
(5520.650) | (5504.644) | (2044.768) | (2034.491) | |
Turn | −0.022 | −0.030 | −0.001 | −0.002 |
(0.023) | (0.020) | (0.008) | (0.008) | |
Flow | 0.004 | −0.010 | −0.0001 | 0.002 |
(0.033) | (0.032) | (0.012) | (0.012) | |
Mom | 32.099 *** | 31.950 *** | −6.972 *** | −6.912 *** |
(2.664) | (2.661) | (0.987) | (0.984) | |
Age | 3.597 ** | 3.618 ** | −0.991 | −1.009 |
(1.714) | (1.707) | (0.635) | (0.631) | |
Inst | −0.246 | −0.257 | 0.087 | 0.087 |
(0.177) | (0.176) | (0.066) | (0.065) | |
Turn×HD | −0.052 | 0.005 | ||
(0.050) | (0.019) | |||
Flow×HD | −0.219 ** | 0.040 | ||
(0.102) | (0.038) | |||
Turn×Herd | −0.136 | 0.113 *** | ||
(0.110) | (0.041) | |||
Flow×Herd | −1.249 *** | 0.291 ** | ||
(0.397) | (0.147) | |||
Constant | −111.520 | −119.981 | 9.477 | 13.343 |
(84.013) | (83.755) | (31.117) | (30.956) | |
Observations | 790 | 790 | 790 | 790 |
R2 | 0.176 | 0.182 | 0.066 | 0.077 |
Adjusted R2 | 0.165 | 0.172 | 0.054 | 0.065 |
Residual Std. Error | 107.706 (df = 779) | 107.293 (df = 779) | 39.893 (df = 779) | 39.655 (df = 779) |
F Statistic | 16.635 *** (df = 10; 779) | 17.362 *** (df = 10; 779) | 5.464 *** (df = 10; 779) | 6.465 *** (df = 10; 779) |
Dependent Variable: | ||||
---|---|---|---|---|
Picking | Timing | |||
(1) | (2) | (3) | (4) | |
ANHD | −31.185 * | −6.589 | ||
(16.838) | (6.251) | |||
Anti-herd | −10.280 | −14.071 | ||
(27.457) | (10.130) | |||
Size | 0.0004 | 0.0004 | 0.0002 | 0.0002 |
(0.001) | (0.001) | (0.001) | (0.001) | |
Expense | 6483.331 | 7442.272 | −774.849 | −744.827 |
(5527.688) | (5534.834) | (2052.010) | (2042.066) | |
Turn | −0.035 | −0.031 | −0.004 | −0.001 |
(0.023) | (0.021) | (0.008) | (0.008) | |
Flow | 0.007 | −0.033 | 0.009 | 0.009 |
(0.046) | (0.033) | (0.017) | (0.012) | |
Mom | 32.486 *** | 32.475 *** | −7.076 *** | −7.078 *** |
(2.653) | (2.663) | (0.985) | (0.983) | |
Age | 3.785 ** | 3.501 ** | −0.981 | −1.006 |
(1.711) | (1.717) | (0.635) | (0.633) | |
Inst | −0.247 | −0.253 | 0.087 | 0.100 |
(0.177) | (0.178) | (0.066) | (0.066) | |
Turn×ANHD | 0.013 | 0.021 | ||
(0.046) | (0.017) | |||
Flow×ANHD | −0.036 | −0.006 | ||
(0.061) | (0.023) | |||
Turn×Anti-herd | −0.037 | 0.029 | ||
(0.071) | (0.026) | |||
Flow×Anti-herd | 0.129 | −0.042 | ||
(0.101) | (0.037) | |||
Constant | −82.132 | −101.032 | 12.531 | 11.534 |
(84.338) | (84.180) | (31.308) | (31.058) | |
Observations | 790 | 790 | 790 | 790 |
R2 | 0.180 | 0.173 | 0.066 | 0.069 |
Adjusted R2 | 0.170 | 0.162 | 0.054 | 0.057 |
Residual Std. Error | 107.436 (df = 779) | 107.909 (df = 779) | 39.883 (df = 779) | 39.813 (df = 779) |
F Statistic | 17.110 *** (df = 10; 779) | 16.278 *** (df = 10; 779) | 5.506 *** (df = 10; 779) | 5.798 *** (df = 10; 779) |
Dependent Variable: | ||||
---|---|---|---|---|
Picking | Timing | |||
(1) | (2) | (3) | (4) | |
HD | 54.217 *** | 7.841 | ||
(18.208) | (8.303) | |||
Herd | 41.651 | −32.099 ** | ||
(31.468) | (14.200) | |||
Size | 0.002 | 0.002 | −0.0002 | 0.0001 |
(0.001) | (0.001) | (0.001) | (0.001) | |
Expense | 9874.800 | 12,199.390 | 1845.753 | 869.286 |
(9594.535) | (9646.887) | (4374.910) | (4353.233) | |
Turn | 0.005 | −0.020 | −0.004 | −0.004 |
(0.026) | (0.024) | (0.012) | (0.011) | |
Flow | −0.024 | −0.029 | 0.006 | 0.006 |
(0.032) | (0.032) | (0.015) | (0.014) | |
Mom | 87.541 *** | 87.994 *** | −23.703 *** | −24.083 *** |
(5.832) | (5.844) | (2.659) | (2.637) | |
Age | 0.916 | 0.821 | −2.582 ** | −2.488 ** |
(2.392) | (2.391) | (1.091) | (1.079) | |
Inst | −0.127 | −0.160 | 0.118 | 0.107 |
(0.206) | (0.205) | (0.094) | (0.093) | |
Turn×HD | −0.127 ** | −0.0001 | ||
(0.063) | (0.029) | |||
Flow×HD | −0.245 | −0.045 | ||
(0.180) | (0.082) | |||
Turn×Herd | −0.200 | 0.218 *** | ||
(0.143) | (0.064) | |||
Flow×Herd | −1.193 *** | 0.227 | ||
(0.417) | (0.188) | |||
Constant | −244.311 * | −265.883 * | 13.909 | 26.486 |
(145.506) | (146.189) | (66.348) | (65.969) | |
Observations | 474 | 474 | 474 | 474 |
R2 | 0.365 | 0.365 | 0.154 | 0.171 |
Adjusted R2 | 0.351 | 0.351 | 0.135 | 0.153 |
Residual Std. Error (df = 463) | 95.934 | 95.940 | 43.744 | 43.294 |
F Statistic (df = 10; 463) | 26.631 *** | 26.620 *** | 8.403 *** | 9.546 *** |
Dependent Variable: | ||||
---|---|---|---|---|
Picking | Timing | |||
(1) | (2) | (3) | (4) | |
HD | −27.146 | 7.688 | ||
(21.336) | (5.853) | |||
Herd | 41.527 | −13.818 | ||
(47.080) | (12.829) | |||
Size | −0.003 | −0.003 | 0.001 | 0.001 |
(0.003) | (0.003) | (0.001) | (0.001) | |
Expense | 8707.031 | 8550.566 | −1727.387 | −1614.967 |
(6151.305) | (6052.086) | (1687.404) | (1649.117) | |
Turn | −0.045 | −0.028 | 0.004 | 0.001 |
(0.035) | (0.030) | (0.010) | (0.008) | |
Flow | 0.019 | −0.072 | 0.0003 | 0.022 |
(0.096) | (0.076) | (0.026) | (0.021) | |
Mom | 2.890 | 8.853 | 3.362 | 1.704 |
(15.470) | (15.218) | (4.244) | (4.147) | |
Age | 12.828 *** | 13.477 *** | −1.865 *** | −2.101 *** |
(2.257) | (2.229) | (0.619) | (0.607) | |
Inst | −0.498 * | −0.473 * | 0.059 | 0.053 |
(0.288) | (0.280) | (0.079) | (0.076) | |
Turn×HD | 0.034 | 0.002 | ||
(0.069) | (0.019) | |||
Flow×HD | −0.265 * | 0.063 * | ||
(0.139) | (0.038) | |||
Turn×Herd | −0.255 | 0.076 * | ||
(0.155) | (0.042) | |||
Flow×Herd | −3.403 *** | 1.114 *** | ||
(0.862) | (0.235) | |||
Constant | −173.552 * | −177.398 * | 33.732 | 34.326 |
(96.018) | (94.551) | (26.339) | (25.764) | |
Observations | 316 | 316 | 316 | 316 |
R2 | 0.131 | 0.156 | 0.069 | 0.108 |
Adjusted R2 | 0.102 | 0.129 | 0.038 | 0.079 |
Residual Std. Error (df = 305) | 102.749 | 101.216 | 28.186 | 27.580 |
F Statistic (df = 10; 305) | 4.588 *** | 5.659 *** | 2.253 ** | 3.706 *** |
Dependent Variable: | ||||
---|---|---|---|---|
Picking | Timing | |||
(1) | (2) | (3) | (4) | |
ANHD | −40.687 ** | −6.161 | ||
(20.126) | (9.282) | |||
Anti-herd | −19.366 | −27.502 * | ||
(35.658) | (16.180) | |||
Size | 0.002 | 0.002 | −0.0002 | −0.0001 |
(0.001) | (0.001) | (0.001) | (0.001) | |
Expense | 5739.628 | 5201.919 | 2260.328 | 1086.475 |
(9512.167) | (9708.601) | (4387.085) | (4405.374) | |
Turn | −0.019 | −0.016 | −0.007 | −0.004 |
(0.026) | (0.024) | (0.012) | (0.011) | |
Flow | 0.025 | −0.050 | 0.019 | 0.013 |
(0.050) | (0.033) | (0.023) | (0.015) | |
Mom | 86.554 *** | 88.712 *** | −24.033 *** | −23.836 *** |
(5.777) | (5.841) | (2.664) | (2.650) | |
Age | 1.141 | 1.281 | −2.516 ** | −2.572 ** |
(2.370) | (2.402) | (1.093) | (1.090) | |
Inst | −0.173 | −0.144 | 0.130 | 0.147 |
(0.204) | (0.207) | (0.094) | (0.094) | |
Turn×ANHD | −0.015 | 0.026 | ||
(0.054) | (0.025) | |||
Flow×ANHD | −0.080 | −0.018 | ||
(0.062) | (0.029) | |||
Turn×Anti-herd | −0.107 | 0.065 | ||
(0.089) | (0.040) | |||
Flow×Anti-herd | 0.155 | −0.058 | ||
(0.117) | (0.053) | |||
Constant | −154.966 | −160.791 | 6.188 | 23.536 |
(143.996) | (146.855) | (66.412) | (66.637) | |
Observations | 474 | 474 | 474 | 474 |
R2 | 0.378 | 0.363 | 0.152 | 0.159 |
Adjusted R2 | 0.365 | 0.349 | 0.134 | 0.141 |
Residual Std. Error (df = 463) | 94.925 | 96.079 | 43.780 | 43.597 |
F Statistic (df = 10; 463) | 28.189 *** | 26.410 *** | 8.312 *** | 8.772 *** |
Dependent Variable: | ||||
---|---|---|---|---|
Picking | Timing | |||
(1) | (2) | (3) | (4) | |
ANHD | −11.742 | −10.841 | ||
(24.525) | (6.744) | |||
Anti-herd | −8.768 | 1.982 | ||
(36.620) | (10.094) | |||
Size | −0.003 | −0.003 | 0.001 | 0.001 |
(0.003) | (0.003) | (0.001) | (0.001) | |
Expense | 7842.418 | 8287.431 | −1927.034 | −1556.496 |
(6253.656) | (6192.816) | (1719.657) | (1706.982) | |
Turn | −0.040 | −0.035 | −0.004 | 0.002 |
(0.035) | (0.032) | (0.010) | (0.009) | |
Flow | −0.139 | −0.132 | 0.022 | 0.038 |
(0.086) | (0.085) | (0.024) | (0.023) | |
Mom | 6.596 | 6.211 | 3.445 | 2.658 |
(15.592) | (15.529) | (4.288) | (4.280) | |
Age | 12.431 *** | 12.621 *** | −1.892 *** | −1.825 *** |
(2.285) | (2.278) | (0.628) | (0.628) | |
Inst | −0.451 | −0.399 | 0.014 | 0.027 |
(0.289) | (0.286) | (0.080) | (0.079) | |
Turn×ANHD | 0.031 | 0.023 | ||
(0.071) | (0.019) | |||
Flow×ANHD | 0.200 | 0.024 | ||
(0.147) | (0.040) | |||
Turn×Anti-herd | 0.042 | −0.003 | ||
(0.098) | (0.027) | |||
Flow×Anti-herd | 0.194 | −0.047 | ||
(0.161) | (0.044) | |||
Constant | −159.948 | −171.327 * | 42.568 | 32.991 |
(99.048) | (96.747) | (27.237) | (26.667) | |
Observations | 316 | 316 | 316 | 316 |
R2 | 0.118 | 0.117 | 0.050 | 0.045 |
Adjusted R2 | 0.089 | 0.088 | 0.019 | 0.014 |
Residual Std. Error (df = 305) | 103.524 | 103.557 | 28.467 | 28.544 |
F Statistic (df = 10; 305) | 4.065 *** | 4.042 *** | 1.608 | 1.434 |
Dependent Variable: | ||||
---|---|---|---|---|
Out | ||||
(1) | (2) | (3) | (4) | |
HD | 1.090 | |||
(1.880) | ||||
Herd | 1.859 | |||
(3.411) | ||||
ANHD | 3.185 | |||
(2.087) | ||||
Anti-herd | 3.469 | |||
(3.421) | ||||
(0.0002) | (0.0002) | (0.0002) | (0.0002) | |
Change | −4.475 ** | −4.515 ** | −4.887 ** | −4.611 ** |
(2.235) | (2.218) | (2.198) | (2.214) | |
Expense | −31.311 | −20.834 | 31.117 | −82.584 |
(690.117) | (690.215) | (681.969) | (687.894) | |
Turn | −0.004 | −0.004 | −0.003 | −0.004 |
(0.003) | (0.003) | (0.003) | (0.003) | |
Flow | 0.028 *** | 0.027 *** | 0.046 *** | 0.030 *** |
(0.004) | (0.004) | (0.006) | (0.004) | |
Mom | 10.292 *** | 10.306 *** | 10.359 *** | 10.313 *** |
(0.333) | (0.334) | (0.327) | (0.331) | |
Age | 0.195 | 0.196 | 0.194 | 0.187 |
(0.215) | (0.214) | (0.211) | (0.214) | |
Inst | −0.010 | −0.010 | −0.018 | −0.007 |
(0.022) | (0.022) | (0.022) | (0.022) | |
Turn×Change | 0.004 | 0.004 | 0.004 | 0.004 |
(0.006) | (0.006) | (0.006) | (0.006) | |
Turn×HD | −0.004 | |||
(0.006) | ||||
Turn×Herd | −0.016 | |||
(0.014) | ||||
Flow×HD | −0.005 | |||
(0.013) | ||||
Flow×Herd | −0.0001 | |||
(0.050) | ||||
Turn×ANHD | −0.011 * | |||
(0.006) | ||||
Turn×Anti-herd | −0.012 | |||
(0.009) | ||||
Flow×ANHD | −0.035 *** | |||
(0.008) | ||||
Flow×Anit-herd | −0.027 ** | |||
(0.013) | ||||
Constant | 9.134 | 9.321 | 8.260 | 10.018 |
(10.522) | (10.519) | (10.422) | (10.477) | |
Observations | 790 | 790 | 790 | 790 |
R2 | 0.586 | 0.586 | 0.598 | 0.589 |
Adjusted R2 | 0.579 | 0.580 | 0.592 | 0.583 |
Residual Std. Error (df = 777) | 13.457 | 13.447 | 13.251 | 13.404 |
F Statistic (df = 12; 777) | 91.579 *** | 91.819 *** | 96.493 *** | 92.813 *** |
Dependent Variable: | ||||
---|---|---|---|---|
Picking | Timing | |||
(1) | (2) | (3) | (4) | |
HD | 18.494 | −2.398 | ||
(15.063) | (5.574) | |||
Herd | 27.721 | −16.309 | ||
(27.249) | (10.060) | |||
Change | −3.519 | −7.162 | −7.367 | −7.699 |
(17.908) | (17.718) | (6.626) | (6.542) | |
Size | 0.0003 | 0.0002 | 0.0002 | 0.0003 |
(0.001) | (0.001) | (0.001) | (0.001) | |
Expense | 7622.279 | 8423.584 | −602.208 | −855.899 |
(5530.058) | (5513.537) | (2046.310) | (2035.619) | |
Turn | −0.021 | −0.032 | −0.006 | −0.007 |
(0.026) | (0.023) | (0.010) | (0.009) | |
Flow | 0.004 | −0.010 | −0.00000 | 0.003 |
(0.033) | (0.032) | (0.012) | (0.012) | |
Mom | 32.094 *** | 31.929 *** | −6.992 *** | −6.937 *** |
(2.668) | (2.665) | (0.987) | (0.984) | |
Age | 3.579 ** | 3.579 ** | −1.036 | −1.056 * |
(1.719) | (1.712) | (0.636) | (0.632) | |
Inst | −0.250 | −0.263 | 0.084 | 0.085 |
(0.178) | (0.177) | (0.066) | (0.065) | |
Turn×Change | 0.0001 | 0.009 | 0.022 | 0.024 |
(0.047) | (0.047) | (0.018) | (0.017) | |
Turn×HD | −0.052 | 0.008 | ||
(0.051) | (0.019) | |||
Turn×Herd | −0.135 | 0.117 *** | ||
(0.111) | (0.041) | |||
Flow×HD | −0.218 ** | 0.041 | ||
(0.102) | (0.038) | |||
Flow×Herd | −1.248 *** | 0.290 ** | ||
(0.398) | (0.147) | |||
Constant | −109.878 | −117.461 | 11.289 | 14.987 |
(84.315) | (84.024) | (31.200) | (31.022) | |
Observations | 790 | 790 | 790 | 790 |
R2 | 0.176 | 0.182 | 0.067 | 0.079 |
Adjusted R2 | 0.163 | 0.170 | 0.053 | 0.065 |
Residual Std. Error | 107.836 (df = 777) | 107.416 (df = 777) | 39.903 (df = 777) | 39.658 (df = 777) |
F Statistic | 13.839 *** (df = 12; 777) | 14.454 *** (df = 12; 777) | 4.684 *** (df = 12; 777) | 5.543 *** (df = 12; 777) |
Dependent Variable: | ||||
---|---|---|---|---|
Picking | Timing | |||
(1) | (2) | (3) | (4) | |
ANHD | −30.823 * | −7.176 | ||
(16.939) | (6.281) | |||
Anti-herd | −9.557 | −14.417 | ||
(27.573) | (10.164) | |||
Change | −4.515 | −5.037 | −7.598 | −6.744 |
(17.844) | (17.844) | (6.617) | (6.578) | |
Size | 0.0003 | 0.0004 | 0.0001 | 0.0002 |
(0.001) | (0.001) | (0.001) | (0.001) | |
Expense | 6435.898 | 7382.915 | −758.345 | −714.205 |
(5535.994) | (5544.269) | (2052.827) | (2043.817) | |
Turn | −0.035 | −0.031 | −0.010 | −0.006 |
(0.026) | (0.024) | (0.010) | (0.009) | |
Flow | 0.008 | −0.032 | 0.010 | 0.010 |
(0.046) | (0.033) | (0.017) | (0.012) | |
Mom | 32.478 *** | 32.464 *** | −7.106 *** | −7.102 *** |
(2.657) | (2.667) | (0.985) | (0.983) | |
Age | 3.760 ** | 3.474 ** | −1.031 | −1.047 * |
(1.717) | (1.722) | (0.637) | (0.635) | |
Inst | −0.251 | −0.258 | 0.084 | 0.098 |
(0.178) | (0.179) | (0.066) | (0.066) | |
Turn×Change | 0.002 | 0.003 | 0.024 | 0.021 |
(0.047) | (0.047) | (0.018) | (0.017) | |
Turn×ANHD | 0.012 | 0.024 | ||
(0.047) | (0.017) | |||
Flow×ANHD | −0.037 | −0.007 | ||
(0.061) | (0.023) | |||
Turn×Anti-herd | −0.039 | 0.031 | ||
(0.071) | (0.026) | |||
Flow×Anti-herd | 0.128 | −0.042 | ||
(0.102) | (0.037) | |||
Constant | −80.483 | −99.074 | 14.371 | 12.821 |
(84.604) | (84.442) | (31.372) | (31.128) | |
Observations | 790 | 790 | 790 | 790 |
R2 | 0.180 | 0.173 | 0.068 | 0.071 |
Adjusted R2 | 0.168 | 0.160 | 0.054 | 0.057 |
Residual Std. Error | 107.564 (df = 777) | 108.037 (df = 777) | 39.886 (df = 777) | 39.826 (df = 777) |
F Statistic | 14.236 *** (df = 12; 777) | 13.547 *** (df = 12; 777) | 4.742 *** (df = 12; 777) | 4.952 *** (df = 12; 777) |
Dependent Variable: | ||||
---|---|---|---|---|
Picking | Timing | |||
(1) | (2) | (3) | (4) | |
HD | −0.207 | −0.485 | ||
(9.839) | (3.646) | |||
Herd | −1.402 | 5.245 | ||
(17.395) | (6.454) | |||
Size | 0.0004 | 0.0004 | 0.0001 | 0.0001 |
(0.001) | (0.001) | (0.001) | (0.001) | |
Change | −6.202 | −9.409 | −7.429 | −6.979 |
(17.823) | (17.758) | (6.604) | (6.588) | |
NEXT | −18.842 | −12.302 | −2.786 | −2.720 |
(11.872) | (10.691) | (4.399) | (3.966) | |
Expense | 7626.975 | 8266.720 | −574.980 | −674.008 |
(5525.053) | (5515.384) | (2047.332) | (2046.181) | |
Turn | −0.033 | −0.038 * | −0.005 | −0.004 |
(0.023) | (0.023) | (0.009) | (0.009) | |
Flow | 0.001 | −0.011 | −0.00001 | 0.003 |
(0.033) | (0.032) | (0.012) | (0.012) | |
Mom | 32.235 *** | 32.127 *** | −6.976 *** | −7.072 *** |
(2.666) | (2.667) | (0.988) | (0.989) | |
Age | 3.600 ** | 3.600 ** | −1.031 | −1.011 |
(1.717) | (1.714) | (0.636) | (0.636) | |
Inst | −0.241 | −0.266 | 0.083 | 0.086 |
(0.178) | (0.177) | (0.066) | (0.066) | |
Turn×Change | 0.007 | 0.014 | 0.021 | 0.020 |
(0.047) | (0.047) | (0.017) | (0.017) | |
Flow×HD | −0.231 ** | 0.043 | ||
(0.102) | (0.038) | |||
Next×HD | 42.697 * | −0.866 | ||
(25.733) | (9.535) | |||
Flow×Herd | −1.160 *** | 0.253 * | ||
(0.403) | (0.149) | |||
Next×Herd | 39.174 | 12.153 | ||
(66.223) | (24.568) | |||
Constant | −103.538 | −111.467 | 10.984 | 11.584 |
(84.157) | (84.011) | (31.185) | (31.168) | |
Observations | 790 | 790 | 790 | 790 |
R2 | 0.179 | 0.183 | 0.068 | 0.070 |
Adjusted R2 | 0.165 | 0.169 | 0.052 | 0.054 |
Residual Std. Error | 107.726 (df = 776) | 107.484 (df = 776) | 39.918 (df = 776) | 39.876 (df = 776) |
F Statistic | 12.998 *** (df = 13; 776) | 13.326 *** (df = 13; 776) | 4.351 *** (df = 13; 776) | 4.487 *** (df = 13; 776) |
Dependent Variable: | ||||
---|---|---|---|---|
Picking | Timing | |||
(1) | (2) | (3) | (4) | |
ANHD | −23.184 ** | 1.076 | ||
(9.929) | (3.688) | |||
Anti-herd | −11.783 | −4.032 | ||
(16.129) | (5.961) | |||
Change | −5.203 | −7.494 | −7.249 | −6.889 |
(17.849) | (17.873) | (6.629) | (6.606) | |
Next | −3.333 | −6.050 | −1.525 | −2.676 |
(12.629) | (11.025) | (4.691) | (4.075) | |
Size | 0.0004 | 0.001 | 0.0001 | 0.0002 |
(0.001) | (0.001) | (0.001) | (0.001) | |
Expense | 6809.747 | 7652.045 | −507.339 | −696.059 |
(5529.498) | (5538.439) | (2053.768) | (2047.049) | |
Turn | −0.032 | −0.036 | −0.004 | −0.003 |
(0.023) | (0.023) | (0.009) | (0.009) | |
Flow | 0.007 | −0.033 | 0.009 | 0.010 |
(0.046) | (0.033) | (0.017) | (0.012) | |
Mom | 32.661 *** | 32.872 *** | −7.024 *** | −7.064 *** |
(2.659) | (2.674) | (0.987) | (0.988) | |
Age | 3.808 ** | 3.595 ** | −1.014 | −1.037 |
(1.717) | (1.721) | (0.638) | (0.636) | |
Inst | −0.254 | −0.257 | 0.083 | 0.096 |
(0.178) | (0.179) | (0.066) | (0.066) | |
Turn×Change | 0.001 | 0.008 | 0.021 | 0.020 |
(0.047) | (0.047) | (0.017) | (0.017) | |
Flow×ANHD | −0.037 | −0.009 | ||
(0.061) | (0.023) | |||
Next×ANHD | −18.586 | −3.935 | ||
(22.909) | (8.509) | |||
Flow×Anti-herd | 0.127 | −0.048 | ||
(0.101) | (0.037) | |||
Next×Anti-herd | −58.067 | −0.366 | ||
(37.688) | (13.930) | |||
Constant | −86.630 | −101.682 | 9.132 | 12.315 |
(84.315) | (84.364) | (31.316) | (31.182) | |
Observations | 790 | 790 | 790 | 790 |
R2 | 0.182 | 0.176 | 0.067 | 0.070 |
Adjusted R2 | 0.168 | 0.163 | 0.051 | 0.054 |
Residual Std. Error | 107.542 (df = 776) | 107.887 (df = 776) | 39.943 (df = 776) | 39.876 (df = 776) |
F Statistic | 13.248 *** (df = 13; 776) | 12.782 *** (df = 13; 776) | 4.271 *** (df = 13; 776) | 4.487 *** (df = 13; 776) |
Dependent variable: | ||||
---|---|---|---|---|
Herd | HD | Anit-Herd | ANHD | |
(1) | (2) | (3) | (4) | |
Flow | −0.011 *** | −0.003 ** | 0.001 | 0.001 * |
(0.004) | (0.001) | (0.001) | (0.001) | |
Turn | −0.004 *** | −0.003 *** | 0.001 ** | 0.001 ** |
(0.001) | (0.001) | (0.001) | (0.0004) | |
Size | 0.00004 | −0.00002 | 0.00005 | −0.00001 |
(0.00004) | (0.00003) | (0.00004) | (0.00003) | |
Expense | −81.348 | 70.526 | −141.164 | −164.839 |
(152.618) | (142.570) | (123.051) | (114.298) | |
Mom | 0.262 ** | 0.044 | −0.061 | −0.022 |
(0.110) | (0.059) | (0.092) | (0.058) | |
Age | −0.025 | −0.023 | −0.039 | 0.048 |
(0.077) | (0.040) | (0.061) | (0.035) | |
Inst | 0.005 | −0.005 | 0.015 *** | 0.005 |
(0.007) | (0.004) | (0.005) | (0.004) | |
Constant | −0.831 | −1.094 | −0.882 | 0.705 |
(2.360) | (2.162) | (1.901) | (1.737) | |
Observations | 790 | 790 | 790 | 790 |
Hypotheses | Validation |
---|---|
H1a: Mutual funds overseen by managers who engage in herding behavior display significant performance distinctions in comparison to other funds. | Rejected |
H1b: Mutual funds overseen by managers who engage in anti-herding behavior display significant performance distinctions in comparison to other funds. | Supported: anti-herding managers underperform. |
H2a. Elevated levels of herding behavior are associated with higher fund manager ability. | Rejected |
H2b. Elevated levels of anti-herding behavior are associated with higher fund manager ability. | Supported: moderate anti-herding reflects lower picking ability. |
H3a. The stock picking ability of managers who engage in herding behavior is influenced by the net inflow of the mutual fund they manage. | Supported: the fund managers with positive mutual fund flow have lower picking skills if they herd. |
H3b. The market timing ability of managers who engage in herding behavior is influenced by the net inflow of the mutual fund they manage. | Rejected. |
H4a. Elevated levels of herding behavior indicate special ability in bull markets. | Supported: herding reflects higher picking but lower timing abilities in bull markets. |
H4b. Elevated levels of anti-herding behavior indicate special ability in bull markets. | Supported: higher moderate anti-herding shows lower picking ability and higher excessive anti-herding shows lower timing ability in bull markets. |
H5. A change in manager performance is associated with poor performance. | Supported: fund firms are more current-performance-focused rather than abilities-focused. |
H6a: Following a change in management where the incoming manager engages in herding behavior, such herding positively influences managerial ability. | Supported: the new herding strategies show higher picking ability. |
H6b: Following a change in management where the incoming manager adopts anti-herding behavior, such anti-herding positively influences managerial ability. | Rejected. |
H7a: Net inflows into mutual funds decrease the likelihood of herding behavior. | Supported: managers have a clear mind about herding and costs of herding relationships. |
H7b: Net inflows into mutual funds increase the likelihood of engaging in anti-herding behavior. | Supported: managers are more likely to make independent decisions based on larger fund flow. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, D.; Montgomery, H.A. Does Herding and Anti-Herding Reflect Portfolio Managers’ Abilities in Emerging Markets? Mathematics 2024, 12, 1220. https://doi.org/10.3390/math12081220
Sheng D, Montgomery HA. Does Herding and Anti-Herding Reflect Portfolio Managers’ Abilities in Emerging Markets? Mathematics. 2024; 12(8):1220. https://doi.org/10.3390/math12081220
Chicago/Turabian StyleSheng, Dachen, and Heather A. Montgomery. 2024. "Does Herding and Anti-Herding Reflect Portfolio Managers’ Abilities in Emerging Markets?" Mathematics 12, no. 8: 1220. https://doi.org/10.3390/math12081220
APA StyleSheng, D., & Montgomery, H. A. (2024). Does Herding and Anti-Herding Reflect Portfolio Managers’ Abilities in Emerging Markets? Mathematics, 12(8), 1220. https://doi.org/10.3390/math12081220