Multi-Pursuer and One-Evader Evasion Differential Game with Integral Constraints for an Infinite System of Binary Differential Equations
Abstract
1. Introduction
2. Statement of the Problem
3. The Main Result
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chikrii, A.A.; Chikrii, G.T. Game problems of approach for quasilinear systems of general form. Proc. Steklov Inst. Math. 2019, 304, S44–S58. [Google Scholar] [CrossRef]
- Petrosyan, L.A. Differential Games of Pursuit; World Scientific: Singapore, 1993. [Google Scholar]
- Makkapati, V.R.; Tsiotras, P. Optimal evading strategies and task allocation in multi-player pursuit-evasion problems. Dyn. Games Appl. 2019, 9, 1168–1187. [Google Scholar] [CrossRef]
- Sun, W.; Tsiotras, P.; Lolla, T.; Subramani, D.N.; Lermusiaux, P.F.J. Multiple-pursuer/one-evader pursuit-evasion game in dynamic flowfields. JGCD 2017, 40, 1627–1637. [Google Scholar] [CrossRef]
- Ramana, M.V.; Kothari, M. Pursuit-Evasion Games of High Speed Evader. J. Intell. Robot. Syst. 2017, 85, 293–306. [Google Scholar] [CrossRef]
- Weintraub, I.E.; Pachter, M.; Garcia, E. An introduction to pursuit-evasion differential games. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 1049–1066. [Google Scholar] [CrossRef]
- Ruiz, B. Surveillance evasion between two identical differential drive robots. Eur. J. Control 2023, 75, 100935. [Google Scholar] [CrossRef]
- Fang, X.; Wang, C.; Xie, L.; Chen, J. Cooperative Pursuit With Multi-Pursuer and One Faster Free-Moving Evader. IEEE Trans. Cybern. 2022, 52, 1405–1414. [Google Scholar] [CrossRef]
- Garcia, E.; Casbeer, D.W.; Von Moll, A.; Pachter, M. Multiple Pursuer Multiple Evader Differential Games. IEEE Trans. Autom. Control 2021, 66, 2345–2350. [Google Scholar] [CrossRef]
- Garcia, E.; Bopardikar, S.D. Cooperative Containment of a High-speed Evader. In Proceedings of the American Control Conference (ACC), New Orleans, LA, USA, 25–28 May 2021; pp. 4698–4703. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Zhang, Y.; Shi, H.; Tang, L.; Li, M. Near-optimal interception strategy for orbital pursuit-evasion using deep reinforcement learning. Acta Astronaut. 2022, 198, 9–25. [Google Scholar] [CrossRef]
- Von Moll, A.; Pachter, M.; Fuchs, Z. Pure Pursuit with an Effector. Dyn. Games Appl. 2023, 13, 961–979. [Google Scholar] [CrossRef]
- Yazdaniyan, Z.; Shamsi, M.; Foroozandeh, Z.; de Pinho, M.d.R. A numerical method based on the complementarity and optimal control formulations for solving a family of zero-sum pursuit-evasion differential games. J. Comput. Appl. Math. 2020, 368, 112535. [Google Scholar] [CrossRef]
- Ibragimov, G.I.; Ferrara, M.; Ruziboev, M.; Pansera, B.A. Linear evasion differential game of one evader and several pursuers with integral constraints. Int. J. Game Theory 2021, 50, 729–750. [Google Scholar] [CrossRef]
- Ibragimov, G.I.; Salleh, Y. Simple motion evasion differential game of many pursuers and one evader with integral constraints on control functions of players. J. Appl. Math. 2012, 2012, 748096. [Google Scholar] [CrossRef]
- Kuchkarov, A.S.; Ibragimov, G.I.; Khakestari, M. On a Linear Differential Game of Optimal Approach of Many Pursuers with One Evader. J. Dyn. Control Syst. 2013, 19, 1–15. [Google Scholar] [CrossRef]
- Kuchkarov, A.S.; Ibragimov, G.I.; Ferrara, M. Simple motion pursuit and evasion differential games with many pursuers on manifolds with Euclidean metric. Discret. Dyn. Nat. Soc. 2016, 2016, 1386242. [Google Scholar] [CrossRef]
- Blagodatskikh, A.I.; Bannikov, A.S. Simultaneous multiple capture in the presence of evader’s defenders. Izv. Instituta Mat. Inform. Udmurt. Gos. Univ. 2023, 62, 10–29. [Google Scholar] [CrossRef]
- Blagodatskikh, A.I.; Petrov, N.N. Simultaneous Multiple Capture of Rigidly Coordinated Evaders. Dyn. Games Appl. 2019, 9, 594–613. [Google Scholar] [CrossRef]
- Grinikh, A.L.; Petrosyan, L.A. An Effective Punishment for an n-Person Prisoner’s Dilemma on a Network. Tr. Instituta Mat. Mekhaniki UrO RAN 2021, 27, 256–262. [Google Scholar] [CrossRef]
- Kumkov, S.S.; Patsko, V.S. Attacker-defender-target problem in the framework of space intercept. In Proceedings of the 57th Israel Annual Conference on Aerospace Sciences, Haifa, Israel, 15–16 March 2017. [Google Scholar]
- Fattorini, H.O. Time-Optimal control of solutions of operational differential equations. SIAM J. Control 1964, 2, 54–59. [Google Scholar]
- Fursikov, A.V. Optimal Control of Distributed Systems, Theory and Applications, Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 2000; Volume 187. [Google Scholar]
- Lions, J.L. Contrôle Optimal de Systémes Gouvernées par des Equations aux Dérivées Partielles; Dunod: Paris, France, 1968. [Google Scholar]
- Osipov, Y.S. The theory of differential games in systems with distributed parameters. Dokl. Akad. Nauk. SSSR 1975, 223, 1314–1317. [Google Scholar]
- Satimov, N.Y.; Tukhtasinov, M. Game problems on a fixed interval in controlled first-order evolution equations. Math. Notes 2006, 80, 578–589. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. On Some Game Problems for First-Order Controlled Evolution Equations. Differ. Equ. 2005, 41, 1169–1177. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. On Game Problems for Second-Order Evolution Equations. Russ. Math. 2007, 51, 49–57. [Google Scholar] [CrossRef]
- Tukhtasinov, M. Some problems in the theory of differential pursuit games in systems with distributed parameters. J. Appl. Math. Mech. 1995, 59, 979–984. [Google Scholar] [CrossRef]
- Tukhtasinov, M.; Mamatov, M.S. On Pursuit Problems in Controlled Distributed Parameters Systems. Math. Notes 2008, 84, 256–262. [Google Scholar] [CrossRef]
- Azamov, A.A.; Ruziboev, M.B. The time-optimal problem for evolutionary partial differential equations. J. Appl. Math. Mech. 2013, 77, 220–224. [Google Scholar] [CrossRef]
- Avdonin, S.A.; Ivanov, S.A. Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Cardona, D.; Delgado, J.; Grajales, B.; Ruzhansky, M. Control of the Cauchy problem on Hilbert spaces: A global approach via symbol criteria. Commun. Pure Appl. Anal. 2023, 22, 3295–3329. [Google Scholar] [CrossRef]
- Ibragimov, G.I. Optimal pursuit time for a differential game in the Hilbert space l2. ScienceAsia 2013, 39S, 25–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazimirova, R.; Ibragimov, G.; Pansera, B.A.; Ibragimov, A. Multi-Pursuer and One-Evader Evasion Differential Game with Integral Constraints for an Infinite System of Binary Differential Equations. Mathematics 2024, 12, 1183. https://doi.org/10.3390/math12081183
Kazimirova R, Ibragimov G, Pansera BA, Ibragimov A. Multi-Pursuer and One-Evader Evasion Differential Game with Integral Constraints for an Infinite System of Binary Differential Equations. Mathematics. 2024; 12(8):1183. https://doi.org/10.3390/math12081183
Chicago/Turabian StyleKazimirova, Ruzakhon, Gafurjan Ibragimov, Bruno Antonio Pansera, and Abdulla Ibragimov. 2024. "Multi-Pursuer and One-Evader Evasion Differential Game with Integral Constraints for an Infinite System of Binary Differential Equations" Mathematics 12, no. 8: 1183. https://doi.org/10.3390/math12081183
APA StyleKazimirova, R., Ibragimov, G., Pansera, B. A., & Ibragimov, A. (2024). Multi-Pursuer and One-Evader Evasion Differential Game with Integral Constraints for an Infinite System of Binary Differential Equations. Mathematics, 12(8), 1183. https://doi.org/10.3390/math12081183