The Mass Formula for Self-Orthogonal and Self-Dual Codes over a Non-Unitary Non-Commutative Ring
Abstract
1. Introduction
2. Preliminaries
2.1. Codes over
2.2. Additive Codes over
2.3. The Ring
3. Codes over
- (i)
- For any positive integer n, there exist a self-orthogonal code over of length n.
- (ii)
- For any odd prime p, there is a left self-orthogonal code over .
- (i)
- Consider as linear code over of length 1. To prove the self-orthogonality of , for all , , we have thatSince , , it follows that, and (mod p). Then, . Taking the direct sum of n copies of this code yields a self-orthogonal code of any length n.
- (ii)
- Let p be a prime and let denote the all-one codeword of length p. The repetition code of length p is then defined by Clearly is a linear code over . Since has characteristic p, then we have that .
- (i)
- Every linear code over of length n and type is equivalent to a code with generator matrix in standard formwhere is the identity matrix, the matrices A, B and Z have entries from .
- (ii)
- and .
- (iii)
- (iv)
- (v)
- (vi)
- (i)
- is a self-orthogonal code if and only if ;
- (ii)
- is a self-dual if and only if ;
- (iii)
- is a left self-dual if and only if ;
- (iv)
- is a right self-dual if and only if .
- (i)
- Let be a self-orthogonal code. Note that . Suppose that . Since is self-orthogonal, for all , we haveHence . Conversely, to prove the self-orthogonality of , for all and for all we havesince .
- (ii)
- Let be a self-dual code. Then from the preceding case, . Now, let be arbitrary. From Theorem 1 (vi), we have . Hence, . It follows that . For the converse, suppose that . From the preceding case, we have . Since and , . It follows that .
- (iii)
- is left self-dual code if and only if , by Theorem 1 (iii) and (v).
- (iv)
- is right self-dual code if and only if (by Theorem 1 (iii) and (iv)). Equivalently, we have if and only if if and only if .
4. Computation of the Mass Formula
5. Classification
6. Conclusions and Open Problems
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conway, J.H.; Pless, V. On the enumeration of self-dual codes. J. Comb. Theory Ser. A 1980, 28, 26–53. [Google Scholar] [CrossRef]
- Huffman, W.C.; Pless, V. Fundamentals of Error-Correcting Codes; Cambridge University Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Leon, J.S.; Pless, V.; Sloane, N.J.A. Self-dual codes over GF(5). J. Comb. Theory Ser. A 1982, 32, 178–194. [Google Scholar] [CrossRef]
- Mallows, C.L.; Pless, V.; Sloane, N.J.A. Self-dual codes over GF(3). SIAM J. Appl. Math. 1976, 31, 649–666. [Google Scholar] [CrossRef]
- Rains, E.M.; Sloane, N.J.A. Self-dual codes, Chapter 3. In Handbook of Coding Theory, I; Pless, V.S., Hufman, W.C., Eds.; Elsevier: North Holland, The Netherlands, 1998. [Google Scholar]
- Balmaceda, J.M.; Betty, R.A.; Nemenzo, F. Mass formula for self-dual codes over . Discret. Math. 2008, 308, 2984–3002. [Google Scholar] [CrossRef]
- Betty, R.A.; Munemasa, A. Mass formula for self-orthogonal codes over . J. Comb. Inf. Syst. Sci. 2009, 34, 51–66. [Google Scholar]
- Choi, W.-H. Mass formula of self-dual codes over galois rings GR(p2,2). Korean J. Math. 2016, 24, 751–764. [Google Scholar] [CrossRef]
- Gaborit, P. Mass formulas for self-dual codes over and Fq + uFq rings. IEEE Trans. Inf. Theory 1996, 42, 1222–1228. [Google Scholar] [CrossRef]
- Dougherty, S.T.; Gaborit, P.; Harada, M.; Solé, P. Type II codes over + u. IEEE Trans. Inf. Theory 1999, 45, 32–45. [Google Scholar] [CrossRef]
- Fields, J.; Gaborit, P.; Leon, J.; Pless, V. All self-dual codes of length 15 or less are known. IEEE Trans. Inf. Theory 1998, 44, 311–322. [Google Scholar] [CrossRef]
- Fine, B. Classification of finite rings of order p2. Math. Mag. 1993, 66, 248–252. [Google Scholar] [CrossRef]
- Alahmadi, A.; Alshuhail, A.; Betty, R.A.; Galvez, L.; Solé, P. Mass formula for self-orthogonal and self-dual codes over non-unital rings of order four. Mathematics 2023, 11, 4736. [Google Scholar] [CrossRef]
- Alahmadi, A.; Altassan, A.; Basaffar, W.; Bonnecaze, A.; Shoaib, H.; Solé, P. Quasi type IV codes over a non-unital ring. Appl. Algebra Eng. Commun. Comput. 2021, 32, 217–228. [Google Scholar] [CrossRef]
- Alahmadi, A.; Melaibari, A.; Solé, P. Duality of codes over non-unital rings of order four. IEEE Access 2023, 11, 53120–53133. [Google Scholar] [CrossRef]
- Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Symb. Comput. 1997, 24, 235–265. [Google Scholar] [CrossRef]
- Alahmadi, A.; Altassan, A.; Basaffar, W.; Shoaib, H.; Bonnecaze, A.; Solé, P. Type IV codes over a non-unital ring. J. Algebra Its Appl. 2022, 21, 2250142. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, Y.H. The mass formula of self-orthogonal codes over GF(q). Korean J. Math. 2017, 25, 201–209. [Google Scholar]
- Pless, V. Number of isotropic subspaces in a finite geometry. Atti Della Accad. Naz. Dei Lincei-Rend.-Cl. Sci.-Fis.-Mat. Nat. 1965, 39, 418–421. [Google Scholar]
- Pless, V. On the uniqueness of the golay codes. J. Comb. Theory 1968, 5, 215–228. [Google Scholar] [CrossRef]
- Van Lint, J.; Wilson, R. A Course in Combinatorics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Raghavendran, R. A class of finite rings. Compos. Math. 1970, 22, 49–57. [Google Scholar]
| Length | Type | Generator Matrices | Weight Distribution | RSD Code | LSD Code | SD Code | |
|---|---|---|---|---|---|---|---|
| 1 | 2 | [<0, 1>, <1, 2>] | ✓ | ✓ | |||
| 2 | 4 | [<0, 1>, <1, 2>] | |||||
| 8 | [<0, 1>, <1, 4>, <2, 4>] | ✓ | ✓ | ||||
| 3 | 12 | [<0, 1>, <3, 8>] | |||||
| 6 | [<0, 1>, <3, 8>] | ||||||
| 16 | [<0, 1>, <1, 2>] | ||||||
| 16 | [<0, 1>, <1, 4>, <2, 4>] | ||||||
| 48 | [<0, 1>, <1, 6>, <2, 12>, <3, 8>] | ✓ | ✓ | ||||
| 12 | [<0, 1>, <2, 6>, <3, 20>] | ✓ | |||||
| 4 | 24 | [<0, 1>, <3, 8>] | |||||
| 12 | [<0, 1>, <3, 8>] | ||||||
| 12 | [<0, 1>, <3, 8>] | ||||||
| 6 | [<0, 1>, <3, 2>, <4, 6>] | ||||||
| 48 | [<0, 1>, <3, 32>, <4, 48>] | ✓ | |||||
| 96 | [<0, 1>, <1, 2>] | ||||||
| 64 | [<0, 1>, <1, 4>, <2, 4>] | ||||||
| 96 | [<0, 1>, <1, 6>, <2, 12>, <3, 8>] | ||||||
| 384 | [<0, 1>, <1, 8>, <2, 24>, <3, 32>, <4, 16>] | ✓ | ✓ |
| Length | Type | Generator Matrices | Weight Distribution | RSD Code | LSD Code | SD Code | |
|---|---|---|---|---|---|---|---|
| 1 | 2 | [<0, 1>, <1, 4>] | ✓ | ✓ | |||
| 2 | 4 | [<0, 1>, <1, 4>] | |||||
| 8 | [<0, 1>, <1, 8>, <2, 16>] | ✓ | ✓ | ||||
| 4 | [<0, 1>, <2, 24>] | ✓ | ✓ | ||||
| 3 | 16 | [<0, 1>, <1, 4>] | |||||
| 16 | [<0, 1>, <1, 8>, <2, 16>] | ||||||
| 48 | [<0, 1>, <1, 12>, <2, 48>, <3, 64>] | ✓ | ✓ | ||||
| 8 | [<0, 1>, <2, 24>] | ||||||
| 2 | [<0, 1>, <2, 4>, <3, 20>] | ||||||
| 8 | [<0, 1>, <1, 4>, <2, 24>, <3, 96>] | ✓ | |||||
| 4 | 32 | [<0, 1>, <2, 24>] | |||||
| 16 | [<0, 1>, <4, 24>] | ||||||
| 4 | [<0, 1>, <2, 4>, <3, 20>] | ||||||
| 4 | [<0, 1>, <2, 4>, <3, 20>] | ||||||
| 4 | [<0, 1>, <4, 24>] | ||||||
| 2 | [<0, 1>, <4, 24>] | ||||||
| 4 | [<0, 1>, <4, 24>] | ||||||
| 4 | [<0, 1>, <4, 24>] | ||||||
| 4 | [<0, 1>, <4, 24>] | ||||||
| 4 | [<0, 1>, <2, 4>, <4, 20>] | ||||||
| 32 | [<0, 1>, <2, 48>, <4, 576>] | ✓ | ✓ |
| Length | Type | Generator Matrices | Weight Distribution | RSD Code | LSD Code | SD Code | |
|---|---|---|---|---|---|---|---|
| 1 | 2 | [<0, 1>, <1, 6>] | ✓ | ✓ | |||
| 2 | 4 | [<0, 1>, <1, 6>] | |||||
| 8 | [<0, 1>, <1, 12>, <2, 36>] | ✓ | ✓ | ||||
| 3 | 16 | [<0, 1>, <1, 6>] | |||||
| 16 | [<0, 1>, <1, 12>, <2, 36>] | ||||||
| 48 | [<0, 1>, <1, 18>, <2, 108>, <3, 216>] | ✓ | ✓ | ||||
| 6 | [<0, 1>, <3, 48>] | ||||||
| 2 | [<0, 1>, <3, 48>] | ||||||
| 2 | [<0, 1>, <3, 48>] | ||||||
| 6 | [<0, 1>, <2, 18>, <3, 324>] | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahmadi, A.; Alshuhail, A.; Betty, R.A.; Galvez, L.; Solé, P. The Mass Formula for Self-Orthogonal and Self-Dual Codes over a Non-Unitary Non-Commutative Ring. Mathematics 2024, 12, 862. https://doi.org/10.3390/math12060862
Alahmadi A, Alshuhail A, Betty RA, Galvez L, Solé P. The Mass Formula for Self-Orthogonal and Self-Dual Codes over a Non-Unitary Non-Commutative Ring. Mathematics. 2024; 12(6):862. https://doi.org/10.3390/math12060862
Chicago/Turabian StyleAlahmadi, Adel, Altaf Alshuhail, Rowena Alma Betty, Lucky Galvez, and Patrick Solé. 2024. "The Mass Formula for Self-Orthogonal and Self-Dual Codes over a Non-Unitary Non-Commutative Ring" Mathematics 12, no. 6: 862. https://doi.org/10.3390/math12060862
APA StyleAlahmadi, A., Alshuhail, A., Betty, R. A., Galvez, L., & Solé, P. (2024). The Mass Formula for Self-Orthogonal and Self-Dual Codes over a Non-Unitary Non-Commutative Ring. Mathematics, 12(6), 862. https://doi.org/10.3390/math12060862

