Inferencing Space Travel Pricing from Mathematics of General Relativity Theory, Accounting Equation, and Economic Functions
Abstract
:1. Introduction
2. Mathematics of General Relativity Applied in Space Travel
2.1. The Mathematics of General Relativity Applied on Space Travel
2.2. Accounting Equation Implies Capital Investment and Assets
2.3. Equilibrium Pricing Based on Production and Consumption Functions of Space Travel
2.4. Space Travel Pricing Process
3. Methodology
3.1. Econophysics Analogy
3.2. Proposition Development
4. Results and Discussions
4.1. Pricing Model and Algorithm
Algorithm 1. MaxWEP: Maximum Walrasian Prices. |
Input: Value matrix V. |
For each item j, let j = (V) − (V − j). |
Output: and MM(V). |
4.2. Case Study and Simulation
4.3. Discussions
4.3.1. Supply Side: The Supply Capability of Attaining Space Curvatures
4.3.2. Demand Side: Space Travel Value-at-Risk Investment
4.3.3. Market Equilibrium: Spacetime Equilibrium
5. Conclusions
5.1. Conclusions
5.2. Research Limitations and Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, K.-L.; Hsu, C.H.C.; Lin, P.M.C.; Su, M. Proposing spacetime scale for space tourism economics. Tour. Econ. 2023, 29, 1671–1678. [Google Scholar] [CrossRef]
- Lampkin, J.; White, R. The Global Space Industry. In Space Criminology: Analysing Human Relationships with Outer Space; Springer: Berlin/Heidelberg, Germany, 2023; pp. 25–47. [Google Scholar]
- Olya, H.G.T.; Han, H. Antecedents of space traveller behavioral intentions. J. Travel Res. 2020, 59, 528–544. [Google Scholar] [CrossRef]
- Dileep, M.R.; Pagliara, F. Space Tourism. In Transportation Systems for Tourism; Springer: Berlin/Heidelberg, Germany, 2023; pp. 269–288. [Google Scholar]
- Wu, E.T. What Are the Truths of Gravity and General Relativity. IOSR J. Appl. Phys. (IOSR-JAP) 2022, 14, 25–51. [Google Scholar]
- Perlov, D.; Vilenkin, A.; Perlov, D.; Vilenkin, A. The Fabric of Space and Time. In Cosmology for the Curious; Springer: Cham, Switzerland, 2017; pp. 59–82. [Google Scholar] [CrossRef]
- Penprase, B.E. Spacetime and Curved Space. In Models of Time and Space from Astrophysics and World Cultures; Springer: Berlin/Heidelberg, Germany, 2023; pp. 129–161. [Google Scholar]
- May, A. The Space Business: From Hotels in Orbit to Mining the Moon—How Private Enterprise is Transforming Space; Icon Books: London, UK, 2021. [Google Scholar]
- Luo, S.; Song, F. Principles-based versus rules-based: Accounting standards precision and financial restatements in China. Asian Rev. Account. 2022, 30, 581–615. [Google Scholar] [CrossRef]
- Juárez, F. The accounting equation inequality: A set theory approach. Glob. J. Bus. Res. 2015, 9, 97–104. [Google Scholar]
- Carroll, S.M. Spacetime and Geometry; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Rodal, J.J. A Machian wave effect in conformal, scalar–tensor gravitational theory. Gen. Relativ. Gravit. 2019, 51, 64. [Google Scholar] [CrossRef]
- Dolan, B.P. Einstein’s General Theory of Relativity: A Concise Introduction; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Barukčić, I. Unified field theory. J. Appl. Math. Phys. 2016, 4, 1379. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Y.; Bai, Q. Introduction to Space Science; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Simplício, P.; Marcos, A.; Bennani, S. Reusable launchers: Development of a coupled flight mechanics, guidance, and control benchmark. J. Spacecr. Rocket. 2020, 57, 74–89. [Google Scholar] [CrossRef]
- Seo, B.R. Future of space travel. In Space Travel for the Masses: History, Current Status, Problems, and Future Directions; Worcester Polytechnic Institute: Worcester, MA, USA, 2013. [Google Scholar]
- Kimmel, P.D.; Weygandt, J.J.; Kieso, D.E. Financial Accounting: Tools for Business Decision-Making; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Prasad, S.; Green, C.J.; Murinde, V. Company Financing, Capital Structure, and Ownership: A Survey, and Implications for Developing Economies; SUERF Studies: New York, NY, USA, 2001. [Google Scholar]
- Juárez, F. The foundations of balance sheet and the inequality of the basic accounting equation from the viewpoint of set theory. In Global Conference on Business & Finance Proceedings; Institute for Business & Finance Research: Hilo, HI, USA, 2015. [Google Scholar]
- Conti, L. Russell’s paradox and free zig zag solutions. Found. Sci. 2023, 28, 185–203. [Google Scholar] [CrossRef]
- Ludwig, W. Tractatus Logico-Philosophicus; Akadémiai Kiadó: Budapest, Hungary, 1989. [Google Scholar]
- Makridis, O. Basics of Set Theory. In Symbolic Logic; Springer: Berlin/Heidelberg, Germany, 2022; pp. 405–458. [Google Scholar]
- Okuyama, Y.; Chang, S.E. Modeling Spatial and Economic Impacts of Disasters; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Johnson, H.G. The neo-classical one-sector growth model: A geometrical exposition and extension to a monetary economy. Economica 1966, 33, 265–287. [Google Scholar] [CrossRef]
- Swan, P.L. Is Investment Into Infrastructure Needed to Achieve Affordable Space Launch? ASCEND: Las Vegas, NV, USA, 2023; p. 4604. [Google Scholar]
- Mirman, L.J. The steady state behavior of a class of one sector growth models with uncertain technology. J. Econ. Theory 1973, 6, 219–242. [Google Scholar] [CrossRef]
- Tohamy, S.M.; Mixon, J.W., Jr. Illustrating consumer theory with the CES utility function. J. Econ. Educ. 2004, 35, 251–258. [Google Scholar]
- Morrell, P.S. Airline Finance; Routledge: London, UK, 2021. [Google Scholar]
- Van Benthem, J.; Girard, P.; Roy, O. Everything else being equal: A modal logic for ceteris paribus preferences. J. Philos. Log. 2009, 38, 83–125. [Google Scholar] [CrossRef]
- Chen, X. Cosmic Inquiries; Columbia University: New York, NY, USA, 1999. [Google Scholar]
- Renn, J. The Genesis of General Relativity: Sources and Interpretations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 250. [Google Scholar]
- Cyril, U.M.; Echobu, O.J.; Chukwuemeka, M.C. Evaluation of the Effect of Financial Factors on Shareholders’ Value of Listed Pharmaceutical Firms in Nigeria. Int. J. Financ. Bank. Res. 2019, 5, 114–125. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, R.; Zhou, C.; Ma, N. Two-period pricing and strategy choice for a supply chain with dual uncertain information under different profit risk levels. Comput. Ind. Eng. 2019, 136, 173–186. [Google Scholar] [CrossRef]
- Alaagam, A. The relationship between profitability and stock prices: Evidence from the Saudi banking sector. Res. J. Financ. Account. 2019, 10, 91–101. [Google Scholar]
- Capoani, L. Theory of Commercial Gravitational Fields in Economics: The Case of Europe. Netw. Spat. Econ. 2023, 23, 845–884. [Google Scholar] [CrossRef]
- Savoiu, G.; Siman, I.I. History and role of econophysics in scientific research. In Econophysics: Background and Applications in Economics, Finance, and Sociophysics; Academic Press: Cambridge, MA, USA, 2013; pp. 3–16. [Google Scholar]
- Săvoiu, G. Statistical thinking and statistical Physics. In Proceedings of the International Conference Econophysics, New Economics & Complexity, Hyperion University and Hyperion Research & Development Institute, Bucharest, Romania, 22 February 2008; Victor Publishing House: Bucharest, Romania, 2008; pp. 85–99. [Google Scholar]
- Savoiu, G.; Andronache, C. The potential of econophysics for the study of economic processes. In Econophysics Background and Applications in Economics, Finance, and Sociophysics; Academic Press: Cambridge, MA, USA, 2013; pp. 91–133. [Google Scholar]
- Morales-Bañuelos, P.; Muriel, N.; Fernández-Anaya, G. A Modified Black-Scholes-Merton Model for Option Pricing. Mathematics 2022, 10, 1492. [Google Scholar] [CrossRef]
- Rickles, D. Econophysics and the complexity of financial markets. In Philosophy of Complex Systems; Elsevier: Amsterdam, The Netherlands, 2011; pp. 531–565. [Google Scholar]
- Phlips, L. The Economics of Price Discrimination; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Müller, C.; Gönsch, J.; Soppert, M.; Steinhardt, C. Customer-centric dynamic pricing for free-floating vehicle sharing systems. Transp. Sci. 2023, 57, 1406–1432. [Google Scholar] [CrossRef]
- Klainerman, S.; Szeftel, J. Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations:(AMS-210); Princeton University Press: Princeton, NJ, USA, 2020; Volume 210. [Google Scholar]
- Ariely, D.; Simonson, I. Buying, bidding, playing, or competing? Value assessment and decision dynamics in online auctions. J. Consum. Psychol. 2003, 13, 113–123. [Google Scholar] [CrossRef]
- Cosgrove, J.K. Einstein’s Principle of Equivalence and the Heuristic Significance of General Covariance. Found. Phys. 2021, 51, 27. [Google Scholar] [CrossRef]
- Guruswami, V.; Hartline, J.D.; Karlin, A.R.; Kempe, D.; Kenyon, C.; McSherry, F. On Profit-Maximizing Envy-Free Pricing; SODA: Vancouver, Canada, 2005. [Google Scholar]
- Chalermsook, P.; Chuzhoy, J.; Kannan, S.; Khanna, S. Improved hardness results for profit maximization pricing problems with unlimited supply. In International Workshop on Approximation Algorithms for Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Bucarey, V.; Elloumi, S.; Labbé, M.; Plein, F. Models and algorithms for the product pricing with single-minded customers requesting bundles. Comput. Oper. Res. 2021, 127, 105139. [Google Scholar] [CrossRef]
- Fernandes, C.G.; Ferreira, C.E.; Franco, Á.J.; Schouery, R.C. The envy-free pricing problem and unit-demand markets. In International Symposium on Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Fernandes, C.G.; Ferreira, C.E.; Franco, Á.J.; Schouery, R. The unit-demand envy-free pricing problem. arXiv 2013, arXiv:1310.0038. [Google Scholar] [CrossRef]
- Gul, F.; Stacchetti, E. Walrasian equilibrium with gross substitutes. J. Econ. Theory 1999, 87, 95–124. [Google Scholar] [CrossRef]
- Bosch Martínez, A. Study of the Benefits and Applications of Passenger Supersonic Transport Vehicles: Case Study of Supersonic 2.0-Virgin Galactic. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2023. [Google Scholar]
- Madan, B.; Halkias, D. Emancipated entrepreneurship in the European space sector: The case of Richard Branson’s Virgin Galactic as a driver of space tourism. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Giachino, C.; Pucciarelli, F.; Bollani, L.; Bonadonna, A. Is Generation Z ready to fly into the space? The future of tourism is coming. Futures 2023, 145, 103064. [Google Scholar] [CrossRef]
- Musselman, B.T.; Winter, S.R.; Rice, S.; Keebler, J.R.; Ruskin, K.J. Point-to-point suborbital space tourism motivation and willingness to fly. Ann. Tour. Res. Empir. Insights 2024, 5, 100119. [Google Scholar] [CrossRef]
- Sheetz, M. The down to earth guide to investing in space. In Expanding Frontiers; Brown, G., Ed.; UK Space Agency: Swindon, UK, 2023; pp. 1–27. [Google Scholar]
- Sepanski, J.H.; Wang, X. New Classes of Distortion Risk Measures and Their Estimation. Risks 2023, 11, 194. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, K.-L.; Xue, X.; Yu, L.; Ren, Y. Inferencing Space Travel Pricing from Mathematics of General Relativity Theory, Accounting Equation, and Economic Functions. Mathematics 2024, 12, 757. https://doi.org/10.3390/math12050757
Peng K-L, Xue X, Yu L, Ren Y. Inferencing Space Travel Pricing from Mathematics of General Relativity Theory, Accounting Equation, and Economic Functions. Mathematics. 2024; 12(5):757. https://doi.org/10.3390/math12050757
Chicago/Turabian StylePeng, Kang-Lin, Xunyue Xue, Liqiong Yu, and Yixin Ren. 2024. "Inferencing Space Travel Pricing from Mathematics of General Relativity Theory, Accounting Equation, and Economic Functions" Mathematics 12, no. 5: 757. https://doi.org/10.3390/math12050757
APA StylePeng, K. -L., Xue, X., Yu, L., & Ren, Y. (2024). Inferencing Space Travel Pricing from Mathematics of General Relativity Theory, Accounting Equation, and Economic Functions. Mathematics, 12(5), 757. https://doi.org/10.3390/math12050757