Application of a Hybrid of the Different Transform Method and Adomian Decomposition Method Algorithms to Solve the Troesch Problem
Abstract
:1. Introduction
2. Different Transform Method
3. Adomian Decomposition Method
4. Solution Method
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Troesch, B.A. A simple approach to a sensitive two-point boundary value problem. J. Comput. Phys. 1976, 21, 279–290. [Google Scholar] [CrossRef]
- Feng, X.; Mei, L.; He, G. An efficient algorithm for solving Troesch’s problem. Appl. Math. Comput. 2007, 189, 500–507. [Google Scholar] [CrossRef]
- Mirmoradi, S.H.; Hosseinpour, I.; Ghanbarpour, S.; Barari, A. Application of an approximate analytical method to nonlinear Troesch’s problem. Appl. Math. Sci. 2009, 3, 1579–1585. [Google Scholar]
- Vazquez-Leal, H.; Khan, Y.; Fernandez-Anaya, G.; Herrera-May, A.; Sarmiento-Reyes, A.d.; Filobello-Nino, U.; Jimenez-Fernandez, V.-M.; Pereyra-Diaz, D. A general solution for Troesch’s problem. Math. Probl. Eng. 2012, 1, 208375. [Google Scholar] [CrossRef]
- Khuri, S.A.; Sayfy, A. Troesch’s problem: A B-spline collocation approach. Math. Comput. Model. 2011, 54, 9–10. [Google Scholar] [CrossRef]
- Chang, S.-H. A variational iteration method for solving Troesch’s problem. J. Comput. Appl. Math. 2010, 234, 3043–3047. [Google Scholar] [CrossRef]
- Izadi, M.; Yüzbaşi, Ş.; Noeiaghdam, S. Approximating solutions of non-linear Troesch’s problem via an efficient quasi-linearization Bessel approach. Mathematics 2021, 9, 1841. [Google Scholar] [CrossRef]
- Deeba, E.; Khuri, S.A.; Xie, S. An algorithm for solving boundary value problems. J. Comput. Phys. 2000, 159, 125–138. [Google Scholar] [CrossRef]
- Temimi, H. A discontinuous Galerkin finite element method for solving the Troesch’s problem. Appl. Math. Comput. 2012, 219, 521–529. [Google Scholar] [CrossRef]
- El-Gamel, M.; Sameeh, M. A Chebychev collocation method for solving Troesch’s problem. Int. J. Math. Comput. Appl. Res. 2013, 3, 23–32. [Google Scholar]
- Khuri, S.A. A numerical algorithm for solving Troesch’s problem. Int. J. Comput. Math. 2003, 80, 493–498. [Google Scholar] [CrossRef]
- Filali, D.; Ali, F.; Akram, M.; Dilshad, M. A Novel Fixed-Point Iteration Approach for Solving Troesch’s Problem. Symmetry 2024, 16, 856. [Google Scholar] [CrossRef]
- Kafri, H.Q.; Khuri, S.A.; Sayfy, A. A new approach based on embedding Green’s functions into fixed-point iterations for highly accurate solution to Troesch’s problem. Int. J. Comput. Methods Eng. Sci. Mech. 2016, 17, 93–105. [Google Scholar] [CrossRef]
- Mohyud-Din, S.T. Solution of Troesch’s problem using He’s polynomials. Rev. Un. Mat. Argentina 2011, 52, 143–148. [Google Scholar]
- Zhou, J.K. Differential Transformation and Its Applications for Electrical Circuits; Huazhong University Press: Wuhan, China, 1986. [Google Scholar]
- Ahmad, M.Z.; Alsarayreh, D.; Alsarayreh, A.; Qaralleh, I. Differential transformation method (DTM) for solving SIS and SI epidemic models. Sains Malays. 2017, 46, 2007–2017. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Pleszczyński, M. Comparison of the selected methods used for solving the ordinary differential equations and their systems. Mathematics 2022, 10, 306. [Google Scholar] [CrossRef]
- Mohanty, M.; Jena, S.R. Differential transformation method (DTM) for approximate solution of ordinary differential equation (ODE). Adv. Model. Anal. B 2018, 61, 3. [Google Scholar] [CrossRef]
- Domairry, G.; Hatami, M. Squeezing Cu–water nanofluid flow analysis between parallel plates by DTM-Padé Method. J. Mol. Liq. 2014, 193, 37–44. [Google Scholar] [CrossRef]
- Sepasgozar, S.; Faraji, M.; Valipour, P. Application of differential transformation method (DTM) for heat and mass transfer in a porous channel. Propuls. Power Res. 2017, 6, 41–48. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor’s formula. J. Comput. Appl. Math. 2008, 220, 85–95. [Google Scholar] [CrossRef]
- Merdan, M.; Gökdoğan, A.; Yıldırım, A.; Mohyud-Din, S.T. Numerical Simulation of Fractional Fornberg-Whitham Equation by Differential Transformation Method. Abstr. Appl. Anal. 2012, 2012, 965367. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Kiani, N.A.; Motamedi, N. Solving fuzzy differential equations by differential transformation method. Inf. Sci. 2009, 179, 956–966. [Google Scholar] [CrossRef]
- Odibat, Z.M. Differential transform method for solving Volterra integral equation with separable kernels. Math. Comput. Model. 2008, 48, 1144–1149. [Google Scholar] [CrossRef]
- Hadizadeh, M.; Moatamedi, N. A new differential transformation approach for two-dimensional Volterra integral equations. Int. J. Comput. Math. 2007, 84, 515–526. [Google Scholar] [CrossRef]
- Brociek, R.; Pleszczyński, M. Comparison of Selected Numerical Methods for Solving Integro-Differential Equations with the Cauchy Kernel. Symmetry 2024, 16, 233. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Pleszczyński, M.; Khan, Y. Solving the integral differential equations with delayed argument by using the DTM method. Sensors 2022, 22, 4124. [Google Scholar] [CrossRef]
- Yüzbaşı, Ş.; Ismailov, N. Solving systems of Volterra integral and integrodifferential equations with proportional delays by differential transformation method. J. Math. 2014, 2014, 725648. [Google Scholar] [CrossRef]
- Brociek, R.; Pleszczyński, M. Differential Transform Method and Neural Network for Solving Variational Calculus Problems. Mathematics 2024, 12, 2182. [Google Scholar] [CrossRef]
- Nejatbakhsh, Y.; Allahviranloo, T.; Kiani, N.A. Solving Fuzzy Integral equations by Differential Transformation Method, First Joint Congress on Fuzzy and Intelligent Systems; Ferdowsi University of Mashhad: Mashhad, Iran, 2007. [Google Scholar]
- Liu, H.; Song, Y. Differential transform method applied to high index differential–algebraic equations. Appl. Math. Comput. 2007, 184, 748–753. [Google Scholar] [CrossRef]
- Ibis, B.; Bayram, M.; Agargun, A.G. Applications of fractional differential transform method to fractional differential-algebraic equations. Eur. J. Pure Appl. Math. 2011, 4, 129–141. [Google Scholar]
- Cockett, J.R.B.; Seely, R.A.G. The Faa di Bruno construction. Theory Appl. Categ. 2011, 25, 394–425. [Google Scholar]
- Mishkov, R.L. Generalization of the formula of Faa di Bruno for a composite function with a vector argument. Int. J. Math. Math. Sci. 2000, 24, 481–491. [Google Scholar] [CrossRef]
- Adomian, G. Nonlinear Stochastic Systems Theory and Applications to Physics; Springer Science and Business Media: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Adomian, G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 1988, 135, 501–544. [Google Scholar] [CrossRef]
- Chang, M.-H. A decomposition solution for fins with temperature dependent surface heat flux. Int. J. Heat Mass Transf. 2005, 48, 1819–1824. [Google Scholar] [CrossRef]
- Grzymkowski, R.; Pleszczyński, M.; Słota, D. Comparing the Adomian decomposition method and the Runge–Kutta method for solutions of the Stefan problem. Int. J. Comput. Math. 2006, 83, 409–417. [Google Scholar] [CrossRef]
- Grzymkowski, R.; Pleszczyński, M.; Słota, D. The two-phase Stefan problem solved by the Adomian decomposition method. In Proceedings of the 15th IASTED International Conference on Applied Simulation and Modelling, Rhodes, Greece, 26–28 June 2006; pp. 511–516. [Google Scholar]
- Lesnic, D.; Elliott, L. The decomposition approach to inverse heat conduction. J. Math. Anal. Appl. 1999, 232, 82–98. [Google Scholar] [CrossRef]
- Pamuk, S. An application for linear and nonlinear heat equations by Adomian’s decomposition method. Appl. Math. Comput. 2005, 163, 89–96. [Google Scholar] [CrossRef]
- Jafari, H.; Daftardar-Gejji, V. Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. Appl. Math. Comput. 2006, 180, 488–497. [Google Scholar] [CrossRef]
- Lesnic, D. The Cauchy problem for the wave equation using the decomposition method. Appl. Math. Lett. 2002, 15, 697–701. [Google Scholar] [CrossRef]
- Singla, R.K.; Das, R. Application of Adomian decomposition method and inverse solution for a fin with variable thermal conductivity and heat generation. Int. J. Heat Mass Transf. 2013, 66, 496–506. [Google Scholar] [CrossRef]
- Shahrezaee, A.M.; Hoseininia, M. Solution of some parabolic inverse problems by Adomian decomposition method. Appl. Math. Sci. 2011, 5, 3949–3958. [Google Scholar]
- Duan, J.-S.; Rach, R.; Baleanu, D.; Wazwaz, A.-M. A review of the Adomian decomposition method and its applications to fractional differential equations. Commun. Fract. Calc. 2012, 3, 73–99. [Google Scholar]
- Tatari, M.; Dehghan, M.; Razzaghi, M. Application of the Adomian decomposition method for the Fokker–Planck equation. Math. Comput. Model. 2007, 45, 639–650. [Google Scholar] [CrossRef]
- Wang, Q. Numerical solutions for fractional KdV–Burgers equation by Adomian decomposition method. Appl. Math. Comput. 2006, 182, 1048–1055. [Google Scholar] [CrossRef]
- Wazwaz, A.-M. A reliable modification of Adomian decomposition method. Appl. Math. Comput. 1999, 102, 77–86. [Google Scholar] [CrossRef]
- Behiry, S.H. Differential transform method for nonlinear initial-value problems by Adomian polynomials. J. Appl. Comput. Math. 2012, 1, 109–114. [Google Scholar] [CrossRef]
- Moon, S.D.; Bhosale, A.B.; Gajbhiye, P.P.; Lonare, G.G. Solution of non-linear Differential equations by using differential Transform Method. Int. J. Math. Stat. Invent. 2014, 2, 78–82. [Google Scholar] [CrossRef]
- Hastings, C.; Mischo, K.; Morrison, M. Hands-on Start to Wolfram Mathematica: And Programming with the Wolfram Language; Wolfram Media: Champaign, IL, USA, 2015. [Google Scholar]
- Wolfram, S. The Mathematica Book; Wolfram Research, Inc.: Champaign, IL, USA, 2003. [Google Scholar]
x | |||||||
---|---|---|---|---|---|---|---|
0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 0.09518 | 0.09604 | 0.00086 | 0.09594 | 0.09604 | 0.09594 | 0.00077 |
0.2 | 0.19063 | 0.19232 | 0.00169 | 0.19213 | 0.0015 | 0.19213 | 0.00149 |
0.3 | 0.28665 | 0.28908 | 0.00243 | 0.2888 | 0.00214 | 0.28879 | 0.00214 |
0.4 | 0.38352 | 0.38656 | 0.00304 | 0.38619 | 0.00266 | 0.38619 | 0.00266 |
0.5 | 0.48154 | 0.485 | 0.00346 | 0.48455 | 0.00301 | 0.48455 | 0.00301 |
0.6 | 0.581 | 0.58464 | 0.00364 | 0.58413 | 0.00313 | 0.58413 | 0.00313 |
0.7 | 0.68224 | 0.68572 | 0.00348 | 0.6852 | 0.00297 | 0.6852 | 0.00297 |
0.8 | 0.78557 | 0.78848 | 0.00291 | 0.78802 | 0.00245 | 0.78802 | 0.00244 |
0.9 | 0.89137 | 0.89316 | 0.00179 | 0.89286 | 0.00149 | 0.89285 | 0.00149 |
1.0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 0.081797 | 0.084661 | 0.002864 | 0.027075 | 0.001129 | |
0.2 | 0.164531 | 0.170171 | 0.00564 | 0.056609 | 0.002361 | |
0.3 | 0.249167 | 0.257394 | 0.008227 | 0.091305 | 0.003811 | |
0.4 | 0.336732 | 0.347223 | 0.010491 | 0.134397 | 0.00561 | |
0.5 | 0.428347 | 0.4406 | 0.012253 | 0.190036 | 0.00797 | |
0.6 | 0.525274 | 0.538534 | 0.01326 | 0.263908 | 0.011161 | |
0.7 | 0.628971 | 0.642129 | 0.013158 | 0.364292 | 0.015487 | |
0.8 | 0.741168 | 0.752608 | 0.01144 | 0.504007 | 0.020869 | |
0.9 | 0.86397 | 0.871363 | 0.007393 | 0.704013 | 0.02385 | |
1.0 | 1 | 1.0 | 1 | 1.0 |
0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 0.081797 | 0.013276 | 0.001788 | 0.000118 | 0.000076 | |
0.2 | 0.164531 | 0.028707 | 0.003866 | 0.000365 | 0.000235 | |
0.3 | 0.249167 | 0.048805 | 0.006575 | 0.001009 | 0.00065 | |
0.4 | 0.336732 | 0.076875 | 0.01037 | 0.002749 | 0.001771 | |
0.5 | 0.428347 | 0.117628 | 0.01592 | 0.007472 | 0.004813 | |
0.6 | 0.525274 | 0.178181 | 0.024257 | 0.02028 | 0.013051 | |
0.7 | 0.628971 | 0.269837 | 0.036909 | 0.054827 | 0.035163 | |
0.8 | 0.741168 | 0.411406 | 0.055126 | 0.146913 | 0.093183 | |
0.9 | 0.86397 | 0.635472 | 0.072162 | 0.387611 | 0.235497 | |
1.0 | 1 | 1.0 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pleszczyński, M.; Kaczmarek, K.; Słota, D. Application of a Hybrid of the Different Transform Method and Adomian Decomposition Method Algorithms to Solve the Troesch Problem. Mathematics 2024, 12, 3858. https://doi.org/10.3390/math12233858
Pleszczyński M, Kaczmarek K, Słota D. Application of a Hybrid of the Different Transform Method and Adomian Decomposition Method Algorithms to Solve the Troesch Problem. Mathematics. 2024; 12(23):3858. https://doi.org/10.3390/math12233858
Chicago/Turabian StylePleszczyński, Mariusz, Konrad Kaczmarek, and Damian Słota. 2024. "Application of a Hybrid of the Different Transform Method and Adomian Decomposition Method Algorithms to Solve the Troesch Problem" Mathematics 12, no. 23: 3858. https://doi.org/10.3390/math12233858
APA StylePleszczyński, M., Kaczmarek, K., & Słota, D. (2024). Application of a Hybrid of the Different Transform Method and Adomian Decomposition Method Algorithms to Solve the Troesch Problem. Mathematics, 12(23), 3858. https://doi.org/10.3390/math12233858