Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations
Abstract
:1. Introduction
2. Preliminaries
- either
3. Main Results
4. Examples
5. Discussion and Conclusions
- (1)
- In this paper, the findings presented are applicable across all time scales without any restrictive conditions, including , and for .
- (2)
- In this paper, we present some sharp oscillation criteria of the Hille-type and Ohriska-type for third-order half-linear functional dynamic equations when and . Our results represent an improvement over previously established Hille-type and Ohriska-type criteria, as detailed below. By virtue of
- (3)
- Establishing Hille-type oscillation criteria for a third-order dynamic Equation (1) would be interesting, assuming that
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Kac, V.; Chueng, P. Quantum Calculus; Universitext; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; O’Regan, D.; Peterson, A. Dynamic equations on time scales: A survey. J. Comput. Appl. Math. 2002, 141, 1–26. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Bazighifan, O.; El-Nabulsi, E.M. Different techniques for studying oscillatory behavior of solution of differential equations. Rocky Mountain J. Math. 2021, 51, 77–86. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Džurina, J.; Jadlovská, I. Oscillatory and asymptotic properties of third-order quasilinear delay differential equations. J. Inequalities Appl. 2019, 2019, 23. [Google Scholar] [CrossRef]
- Hassan, T.S. Oscillation of third-order nonlinear delay dynamic equations on time scales. Math. Comput. Model. 2009, 49, 1573–1586. [Google Scholar] [CrossRef]
- Grace, S.R.; Bohner, M.; Agarwal, R.P. On the oscillation of second-order half-linear dynamic equations. J. Differ. Equ. Appl. 2009, 15, 451–460. [Google Scholar] [CrossRef]
- Zhu, Y.R.; Mao, Z.X.; Liu, S.P.; Tian, J.P. Oscillation criteria of second-order dynamic equations on time scales. Mathematics 2021, 9, 1867. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A. Oscillation of third-order nonlinear functional dynamic equations on time scales. Differ. Eq. Dynam. Syst. 2010, 18, 199–227. [Google Scholar] [CrossRef]
- Li, T.; Han, Z.; Sun, S.; Zhao, Y. Oscillation results for third-order nonlinear delay dynamic equations on time scales. Bull. Malays. Math. Sci. Soc. 2011, 34, 639–648. [Google Scholar]
- Jadlovská, I. Iterative oscillation results for second-order differential equations with advanced argument. Electron. J. Differ. Eq. 2017, 2017, 162. [Google Scholar]
- Bohner, M.; Vidhyaa, K.S.; Thandapani, E. Oscillation of noncanonical second-order advanced differential equations via canonical transform. Constr. Math. Anal. 2022, 5, 7–13. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Džurina, J.; Jadlovská, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
- Frassu, S.; Viglialoro, G. Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent. Nonlinear Anal. 2021, 213, 112505. [Google Scholar] [CrossRef]
- Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Integral Equations 2021, 34, 315–336. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T. Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math. Comput. 2015, 254, 408–418. [Google Scholar] [CrossRef]
- Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 2019, 70, 86. [Google Scholar] [CrossRef]
- Akın, E.; Hassan, T.S. Comparison criteria for third order functional dynamic equations with mixed nonlinearities. Appl. Math. Comput. 2015, 268, 169–185. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation and asymptotic properties of second order half-linear differential equations with mixed deviating arguments. Mathematics 2021, 9, 2552. [Google Scholar] [CrossRef]
- Demidenko, G.V.; Matveeva, I.I. Asymptotic stability of solutions to a class of second-order delay differential equations. Mathematics 2021, 9, 1847. [Google Scholar] [CrossRef]
- Fite, W.B. Concerning the zeros of the solutions of certain differential equations. Trans. Amer. Math. Soc. 1918, 19, 341–352. [Google Scholar] [CrossRef]
- Hille, E. Non-oscillation theorems. Trans. Amer. Math. Soc. 1948, 64, 234–252. [Google Scholar] [CrossRef]
- Erbe, L. Oscillation criteria for second-order nonlinear delay equations. Canad. Math. Bull. 1973, 16, 49–56. [Google Scholar] [CrossRef]
- Ohriska, J. Oscillation of second-order delay and ordinary differential equations. Czech. Math. J. 1984, 34, 107–112. [Google Scholar] [CrossRef]
- Bohner, M.; Hassan, T.S.; Li, T. Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 2018, 29, 548–560. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for half-linear delay dynamic equations on time scales. Nonlinear Dynam. Sys. Th. 2009, 9, 51–68. [Google Scholar]
- Karpuz, B. Hille–Nehari theorems for dynamic equations with a time scale independent critical constant. Appl. Math. Comput. 2019, 346, 336–351. [Google Scholar] [CrossRef]
- Erbe, L.; Peterson, A.; Saker, S.H. Hille and Nehari-type criteria for third-order dynamic equations. J. Math. Anal. Appl. 2007, 329, 112–131. [Google Scholar] [CrossRef]
- Saker, S.H. Oscillation of third-order functional dynamic equations on time scales. Sci. China Math. 2011, 54, 2597–2614. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z. Asymptotic properties of solutions of certain third-order dynamic equations. J. Comput. Appl. Math. 2012, 236, 2354–2366. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Hille and Nehari type criteria for third order delay dynamic equations. J. Differ. Equ. Appl. 2013, 19, 1563–1579. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Hassan, T.S.; Mohammed, W. Oscillation criteria for third-order functional half-linear dynamic equations. Adv. Differ. Equ. 2017, 2017, 111. [Google Scholar]
- Hassan, T.S.; Almatroud, A.O.; Al-Sawalha, M.M.; Odinaev, I. Asymptotics and Hille-type results for dynamic equations of third order with deviating arguments. Symmetry 2021, 13, 2007. [Google Scholar] [CrossRef]
- Hassan, T.S.; Ramadan, R.A.; Alsheekhhussain, Z.; Khedr, A.Y.; Abdel Menaem, A.; Odinaev, I. Improved Hille oscillation criteria for nonlinear functional dynamic equations of third-order. Mathematics 2022, 10, 1078. [Google Scholar] [CrossRef]
- Hassan, T.S.; Kong, Q.; El-Nabulsi, R.A.; Anukool, W. New Hille-type and Ohriska-type criteria for nonlinear third-order dynamic equations. Mathematics 2022, 10, 4143. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A note on oscillation of second-order delay differential equations. Appl. Math. Lett. 2017, 69, 126–132. [Google Scholar] [CrossRef]
- Sun, S.; Han, Z.; Zhao, P.; Zhang, C. Oscillation for a class of second-order Emden-Fowler delay dynamic equations on time scales. Adv. Differ. Equ. 2010, 2010, 642356. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, L.; Wang, L. Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput. Math. Appl. 2011, 61, 2342–2348. [Google Scholar] [CrossRef]
- Sun, Y.; Han, Z.; Sun, Y.; Pan, Y. Oscillation theorems for certain third-order nonlinear delay dynamic equations on time scales. E. J. Qual. Theory Diff. Equ. 2011, 75, 1–14. [Google Scholar] [CrossRef]
- Han, Z.; Li, T.; Sun, S.; Zhang, M. Oscillation behavior of solutions of third-order nonlinear delay dynamic equations on time scales. Commun. Korean Math. Soc. 2011, 26, 499–513. [Google Scholar] [CrossRef]
- Hassan, T.S.; Kong, Q. Asymptotic behavior of third-order functional dynamic equations with γ-Laplacian and nonlinearities given by Riemann-Stieltjes integrals. Electron. J. Qual. Theory Differ. Equ. 2014, 40, 1–21. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; Kachout, M.; El-Matary, B.M.; Iambor, L.F.; Odinaev, I.; Ali, A. Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations. Mathematics 2024, 12, 3740. https://doi.org/10.3390/math12233740
Hassan TS, Kachout M, El-Matary BM, Iambor LF, Odinaev I, Ali A. Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations. Mathematics. 2024; 12(23):3740. https://doi.org/10.3390/math12233740
Chicago/Turabian StyleHassan, Taher S., Mnaouer Kachout, Bassant M. El-Matary, Loredana Florentina Iambor, Ismoil Odinaev, and Akbar Ali. 2024. "Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations" Mathematics 12, no. 23: 3740. https://doi.org/10.3390/math12233740
APA StyleHassan, T. S., Kachout, M., El-Matary, B. M., Iambor, L. F., Odinaev, I., & Ali, A. (2024). Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations. Mathematics, 12(23), 3740. https://doi.org/10.3390/math12233740