On the Incomplete Edouard and Incomplete Edouard–Lucas Numbers
Abstract
:1. Introduction
2. The Incomplete Edouard and Incomplete Edouard–Lucas Numbers
3. Some Identities
4. Generating Functions of Incomplete Edouard and Incomplete Edouard–Lucas Numbers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soykan, Y. Generalized Edouard numbers. Int. J. Adv. Appl. Math. and Mech. 2022, 3, 41–52. [Google Scholar]
- Behera, A.; Panda, G.K. On the square roots of triangular numbers. Fibonacci Quart. 1999, 37, 98–105. [Google Scholar] [CrossRef]
- Ray, P.K. Balancing and Cobalancing Numbers. Ph.D. Thesis, Department of Mathematics, National Institute of Technology, Rourkela, India, 2009. [Google Scholar]
- Bouroubi, S. On the Square-triangular and Balancing-Numbers. Rostock Math. Kolloq. 2012, 72, 73–80. [Google Scholar]
- Chimpanzo, J.; Catarino, P.; Vasco, P.; Borges, A. Bidimensional extensions of balancing and Lucas-Balancing numbers. J. Discret. Math. Sci. Cryptogr. 2014, 27, 95–115. [Google Scholar] [CrossRef]
- Chimpanzo, J.; Catarino, P.M.M.C.; Espinar, M.V.O. Some Identities and Generating Functions for Bidimensional Balancing and Cobalancing Sequences. Univers. J. Math. Appl. 2024, 7, 68–75. [Google Scholar] [CrossRef]
- Frontczak, R.; Baden-Württemberg, L. Sums of balancing and Lucas-balancing numbers with binomial coefficients. Int. J. Anal. Appl. 2018, 12, 585–594. [Google Scholar] [CrossRef]
- Liptai, K. Lucas Balancing Numbers. Acta Math. Univ. Ostrav. 2006, 14, 43–47. [Google Scholar]
- Liptai, K.; Luca, F.; Pinter, A.; Szalay, L. Generalized Balancing Numbers. Indag. Math. 2009, 20, 87–100. [Google Scholar] [CrossRef]
- Olajos, P. Properties of Balancing, Cobalancing, and Generalized Balancing Numbers. Ann. Math. Inform. 2010, 37, 125–138. [Google Scholar]
- Panda, G.K.; Ray, P.K. Some Links of Balancing and Cobalancing Numbers with Pell and Associated Pell Numbers. Bull. Inst. Math. Acad. Sin. 2011, 6, 41–72. [Google Scholar]
- Patel, B.K.; Nurettin, I.; Ray, P.K. Incomplete balancing and Lucas-balancing numbers. Math. Rep. 2018, 20, 59–72. [Google Scholar]
- Djordjević, G.B. Generating functions of the incomplete generalized Fibonacci and generalized Lucas numbers. Fibonacci Quart. 2004, 42, 106–113. [Google Scholar] [CrossRef]
- Filipponi, P. Incomplete Fibonacci and Lucas numbers. Rend. Circ. Mat. Palermo 1996, 45, 37–56. [Google Scholar] [CrossRef]
- Pintér, A.; Srivastava, H.M. Generating functions of the incomplete Fibonacci and Lucas numbers. Rend. Circ. Mat. Palermo 1999, 48, 591–596. [Google Scholar] [CrossRef]
- Ramírez, J.L. Incomplete generalized Fibonacci and Lucas polynomials. Hacet. J. Math. Stat. 2015, 44, 363–373. [Google Scholar] [CrossRef]
- Tasci, D.; Firengiz, M.C.; Tuglu, N. Incomplete bivariate Fibonacci and Lucas p-polynomials. Discret. Dyn. Nat. Soc. 2012, 2012, 840345. [Google Scholar] [CrossRef]
- Tasci, D.; Firengiz, M.C. Incomplete Fibonacci and Lucas p-numbers. Math. Comput. Model. 2010, 52, 1763–1770. [Google Scholar] [CrossRef]
- Yilmaz, N. Incomplete Tribonacci Numbers and Its Determinants. Master’s Thesis, Selçuk University, Konya, Turkey, 2011. [Google Scholar]
- Yilmaz, N.; Taskara, N. Incomplete Tribonacci-Lucas Numbers and Polynomials. Adv. Appl. Clifford Algebr. 2015, 25, 741–753. [Google Scholar] [CrossRef]
- Zhong, J.; Yao, J.; Chung, C. A Note on Incomplete Fibonacci–Lucas Relations. Symmetry 2023, 15, 2113. [Google Scholar] [CrossRef]
- Catarino, P.; Campos, H. Incomplete k-Pell, k-Pell-Lucas, and modified k-Pell numbers. Hacet. J. Math. Stat. 2017, 46, 361–372. [Google Scholar] [CrossRef]
- Djordjevi’c, G.B.; Srivastava, H.M. Incomplete generalized Jacobsthal and Jacobsthal–Lucas numbers. Math. Comput. Model. 2005, 42, 1049–1056. [Google Scholar] [CrossRef]
n/k | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
1 | 4 | |||||
2 | 28 | |||||
3 | 179 | 168 | ||||
4 | 1080 | 984 | ||||
5 | 6479 | 5723 | 5740 | |||
6 | 38,878 | 33,262 | 33,460 | |||
7 | 233,279 | 193,103 | 195,047 | 195,024 | ||
8 | 1,399,680 | 1,119,744 | 1,137,024 | 1,136,688 | ||
9 | 8,398,079 | 6,485,183 | 6,629,039 | 6,625,079 | 6,625,108 | |
10 | 50,388,478 | 37,511,422 | 38,654,494 | 38,613,454 | 38,613,964 | |
11 | 302,330,879 | 216,670,463 | 225,441,791 | 225,051,695 | 225,058,715 | 225,058,680 |
n/k | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
1 | 7 | |||||
2 | 37 | 35 | ||||
3 | 217 | 199 | ||||
4 | 1297 | 1153 | 1155 | |||
5 | 7777 | 6697 | 6727 | |||
6 | 46,657 | 38,881 | 39,205 | 39,203 | ||
7 | 279,937 | 225,505 | 228,529 | 228,487 | ||
8 | 1,679,617 | 1,306,369 | 1,332,289 | 1,331,713 | 1,331,715 | |
9 | 10,077,697 | 7,558,273 | 7,768,225 | 7,761,745 | 7,761,799 | |
10 | 60,466,177 | 43,670,017 | 45,302,977 | 45,238,177 | 45,239,077 | 45,239,075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spreafico, E.V.P.; Costa, E.A.; Catarino, P. On the Incomplete Edouard and Incomplete Edouard–Lucas Numbers. Mathematics 2024, 12, 3357. https://doi.org/10.3390/math12213357
Spreafico EVP, Costa EA, Catarino P. On the Incomplete Edouard and Incomplete Edouard–Lucas Numbers. Mathematics. 2024; 12(21):3357. https://doi.org/10.3390/math12213357
Chicago/Turabian StyleSpreafico, Elen Viviani Pereira, Eudes Antonio Costa, and Paula Catarino. 2024. "On the Incomplete Edouard and Incomplete Edouard–Lucas Numbers" Mathematics 12, no. 21: 3357. https://doi.org/10.3390/math12213357
APA StyleSpreafico, E. V. P., Costa, E. A., & Catarino, P. (2024). On the Incomplete Edouard and Incomplete Edouard–Lucas Numbers. Mathematics, 12(21), 3357. https://doi.org/10.3390/math12213357