Lebesgue Spaces and Operators with Complex Gaussian Kernels
Abstract
1. Introduction and Preliminaries
2. The Operators with Complex Gaussian Kernels over
3. The Operators with Complex Gaussian Kernels over
4. The Gauss–Weierstrass Semigroup as a Particular Case
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steinwart, I.; Christmann, A. Support Vector Machines; Information Science and Statistics; Springer: New York, NY, USA, 2008. [Google Scholar]
- Gong, R.; Vempati, M.N.; Wu, Q.; Xie, P. Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces. J. Aust. Math. Soc. 2022, 113, 36–56. [Google Scholar] [CrossRef]
- Li, T.; Zada, A. Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces. Adv. Differ. Equ. 2016, 153, 1–8. [Google Scholar] [CrossRef]
- Baez, J.C.; Segal, I.E.; Zhou, Z. Introduction to Algebraic and Constructive Quantum Field Theory; Princeton Series in Physics; Princeton University Press: Princeton, NJ, USA, 1992. [Google Scholar]
- Howe, R. “The oscillator semigroup” in The Mathematical Heritage of Hermann Weyl (Durham, NC, 1987). Proc. Sympos. Pure Math. Am. Math. Soc. Provid. 1988, 48, 61–132. [Google Scholar]
- Folland, G.B. Harmonic Analysis in Phase Space. In Annals of Mathematics Studies; Princeton University Press: Princeton, NJ, USA, 1989; Volume 122. [Google Scholar]
- Lieb, E.H. Gaussian kernels have only Gaussian maximizers. Invent. Math. 1990, 102, 179–208. [Google Scholar] [CrossRef]
- Negrín, E.R. Operators with complex Gaussian kernels: Boundedness properties. Proc. Am. Math. Soc. 1995, 123, 1185–1190. [Google Scholar] [CrossRef]
- Negrín, E.R. Complex Gaussian operators in dimension one. Bull. Inst. Math. Acad. Sin. 1995, 23, 37–53. [Google Scholar]
- Maan, J.; Negrín, E.R. Operators with complex Gaussian kernels over Lebesgue spaces. Bull. Inst. Math. Acad. Sin. 2024, 19, 109–118. [Google Scholar] [CrossRef]
- Hayek, N.; Srivastava, H.M.; González, B.J.; Negrín, E.R. A family of Wiener transforms associated with a pair of operators on Hilbert space. Integral Transform. Spec. Funct. 2013, 24, 1–8. [Google Scholar] [CrossRef]
- Srivastava, H.M.; González, B.J.; Negrin, E.R. A characterization of the second quantization by using the Segal duality transform. Appl. Math. Comput. 2013, 219, 6236–6240. [Google Scholar]
- González, B.J.; Negrín, E.R. Parseval-type relations and Lp-inequalities for the operators with complex Gaussian kernels. Complex Anal. Oper. Theory 2017, 11, 603–610. [Google Scholar] [CrossRef]
- González, B.J.; Negrín, E.R. On operators with complex Gaussian kernels over Lp spaces. Filomat 2019, 33, 2861–2866. [Google Scholar] [CrossRef]
- Alpay, D.; Jorgensen, P.; Levanony, D. A class of Gaussian processes with fractional spectral measures. J. Funct. Anal. 2011, 261, 507–541. [Google Scholar] [CrossRef]
- Weissler, F.B. Two-point inequalities, the Hermite semigroup, and the Gauss-Weierstrass semigroup. J. Funct. Anal. 1979, 32, 102–121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrín, E.R.; González, B.J.; Maan, J. Lebesgue Spaces and Operators with Complex Gaussian Kernels. Mathematics 2024, 12, 3001. https://doi.org/10.3390/math12193001
Negrín ER, González BJ, Maan J. Lebesgue Spaces and Operators with Complex Gaussian Kernels. Mathematics. 2024; 12(19):3001. https://doi.org/10.3390/math12193001
Chicago/Turabian StyleNegrín, E. R., B. J. González, and Jeetendrasingh Maan. 2024. "Lebesgue Spaces and Operators with Complex Gaussian Kernels" Mathematics 12, no. 19: 3001. https://doi.org/10.3390/math12193001
APA StyleNegrín, E. R., González, B. J., & Maan, J. (2024). Lebesgue Spaces and Operators with Complex Gaussian Kernels. Mathematics, 12(19), 3001. https://doi.org/10.3390/math12193001