Lebesgue Spaces and Operators with Complex Gaussian Kernels
Abstract
:1. Introduction and Preliminaries
2. The Operators with Complex Gaussian Kernels over
3. The Operators with Complex Gaussian Kernels over
4. The Gauss–Weierstrass Semigroup as a Particular Case
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steinwart, I.; Christmann, A. Support Vector Machines; Information Science and Statistics; Springer: New York, NY, USA, 2008. [Google Scholar]
- Gong, R.; Vempati, M.N.; Wu, Q.; Xie, P. Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces. J. Aust. Math. Soc. 2022, 113, 36–56. [Google Scholar] [CrossRef]
- Li, T.; Zada, A. Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces. Adv. Differ. Equ. 2016, 153, 1–8. [Google Scholar] [CrossRef]
- Baez, J.C.; Segal, I.E.; Zhou, Z. Introduction to Algebraic and Constructive Quantum Field Theory; Princeton Series in Physics; Princeton University Press: Princeton, NJ, USA, 1992. [Google Scholar]
- Howe, R. “The oscillator semigroup” in The Mathematical Heritage of Hermann Weyl (Durham, NC, 1987). Proc. Sympos. Pure Math. Am. Math. Soc. Provid. 1988, 48, 61–132. [Google Scholar]
- Folland, G.B. Harmonic Analysis in Phase Space. In Annals of Mathematics Studies; Princeton University Press: Princeton, NJ, USA, 1989; Volume 122. [Google Scholar]
- Lieb, E.H. Gaussian kernels have only Gaussian maximizers. Invent. Math. 1990, 102, 179–208. [Google Scholar] [CrossRef]
- Negrín, E.R. Operators with complex Gaussian kernels: Boundedness properties. Proc. Am. Math. Soc. 1995, 123, 1185–1190. [Google Scholar] [CrossRef]
- Negrín, E.R. Complex Gaussian operators in dimension one. Bull. Inst. Math. Acad. Sin. 1995, 23, 37–53. [Google Scholar]
- Maan, J.; Negrín, E.R. Operators with complex Gaussian kernels over Lebesgue spaces. Bull. Inst. Math. Acad. Sin. 2024, 19, 109–118. [Google Scholar] [CrossRef]
- Hayek, N.; Srivastava, H.M.; González, B.J.; Negrín, E.R. A family of Wiener transforms associated with a pair of operators on Hilbert space. Integral Transform. Spec. Funct. 2013, 24, 1–8. [Google Scholar] [CrossRef]
- Srivastava, H.M.; González, B.J.; Negrin, E.R. A characterization of the second quantization by using the Segal duality transform. Appl. Math. Comput. 2013, 219, 6236–6240. [Google Scholar]
- González, B.J.; Negrín, E.R. Parseval-type relations and Lp-inequalities for the operators with complex Gaussian kernels. Complex Anal. Oper. Theory 2017, 11, 603–610. [Google Scholar] [CrossRef]
- González, B.J.; Negrín, E.R. On operators with complex Gaussian kernels over Lp spaces. Filomat 2019, 33, 2861–2866. [Google Scholar] [CrossRef]
- Alpay, D.; Jorgensen, P.; Levanony, D. A class of Gaussian processes with fractional spectral measures. J. Funct. Anal. 2011, 261, 507–541. [Google Scholar] [CrossRef]
- Weissler, F.B. Two-point inequalities, the Hermite semigroup, and the Gauss-Weierstrass semigroup. J. Funct. Anal. 1979, 32, 102–121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrín, E.R.; González, B.J.; Maan, J. Lebesgue Spaces and Operators with Complex Gaussian Kernels. Mathematics 2024, 12, 3001. https://doi.org/10.3390/math12193001
Negrín ER, González BJ, Maan J. Lebesgue Spaces and Operators with Complex Gaussian Kernels. Mathematics. 2024; 12(19):3001. https://doi.org/10.3390/math12193001
Chicago/Turabian StyleNegrín, E. R., B. J. González, and Jeetendrasingh Maan. 2024. "Lebesgue Spaces and Operators with Complex Gaussian Kernels" Mathematics 12, no. 19: 3001. https://doi.org/10.3390/math12193001
APA StyleNegrín, E. R., González, B. J., & Maan, J. (2024). Lebesgue Spaces and Operators with Complex Gaussian Kernels. Mathematics, 12(19), 3001. https://doi.org/10.3390/math12193001