Fractional Calculus for Non-Discrete Signed Measures
Abstract
:1. Introduction
1.1. Short Historic and Bibliographic Overview
1.2. Preliminaries: Powers Based on Semigroups
1.3. Detailed Content
2. Simple Examples of Semigroups Based on Integral Operators with Signed Measures
3. Main Result of the General Semigroup Operator
4. New Fractional Operators
4.1. Examples of Fractional Powers of Integral Operators with Signed Measures
4.2. Fractional Powers of Differential Operators with Partial Derivatives
4.3. Fractional Poisson and Heisenberg Brackets
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1993; 976p. [Google Scholar]
- Kolokoltsov, V.N. The Probabilistic Point of View on the Generalized Fractional Partial Differential Equations. Fract. Calc. Appl. Anal. 2019, 22, 543–600. [Google Scholar] [CrossRef]
- Hilfer, R. Anomalous Transport: Foundations and Applications; Klages, R., Radons, G., Sokolov, I.M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim an der Bergstrasse, Germany, 2008; pp. 17–73. [Google Scholar]
- Balakrishnan, A.V. An operational calculus for infinitesimal generators of semigroups. Trans. Amer. Math. Soc. 1959, 91, 330–353. [Google Scholar]
- Krasnoselski, M.A.; Zabreyko, P.P.; Pustilnik, E.I.; Sobolevski, P.S. Integral Operators in the Spaces of Summable Functions; Nauka: Moscow, Russia, 1966; 500p. [Google Scholar]
- Komatsu, H. Fractional powers of operators. Pacific J. Math. 1966, 19, 285–346. [Google Scholar] [CrossRef]
- Westphal, U. Ein Kalkül für gebrochene Potenzen infinitesimaler Erzeuger von Halbgruppen und Gruppen von Operatoren, Teil I: Halbgruppenerzeuger, Teil II: Gruppenerzeuger. Gompositio Math. 1970, 22, 67–136. [Google Scholar]
- Yosida, K. Functional Analysis, 6th ed.; Springer: Berlin/Heidelberg, Germany, 1980; 504p. [Google Scholar]
- Holmgren, H. On differentialkalkylen med indices af hvad natur som helst. Kongl. Svenska Vetenskaps-Akad. Handl. Stockholm 1866, 5, 1–83. (In Swedish) [Google Scholar]
- Osler, T. The fractional derivative of a composite function. SIAM J. Mat. Anal. 1970, 1, 288–293. [Google Scholar] [CrossRef]
- Osler, T.J. Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 1970, 18, 658–674. [Google Scholar] [CrossRef]
- Talenti, G. Sul Problema di Cauchy per le Equazioni a Derivate Parziali. Ann. Mat. Pura Appl. 1965, LXVII, 365–394. [Google Scholar] [CrossRef]
- Chrysovergis, A. Some Remarks on Talenti’s Semigroup. Canad. Math. Bull. 1971, 14, 147–150. [Google Scholar] [CrossRef]
- Seidman, T.I. A Remark on Talenti’s Semigroup. Canad. Math. Bull. 1975, 18, 591–592. [Google Scholar] [CrossRef]
- Bonicatto, P.; Gusev, N.A. Non-uniqueness of signed measure-valued solutions to the continuity equation in presence of a unique flow. Rend. Lincei 2019, 30, 511–531. [Google Scholar] [CrossRef]
- Hochberg, K.J. A Signed Measure on Path Space Related to Wiener Measure. Ann. Probab. 1978, 6, 433–458. [Google Scholar] [CrossRef]
- Cohen, S.N.; Elliott, R.J. Stochastic Calculus and Applications; Birkhäuser: New York, NY, USA, 2015. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Pitman Research Notes in Mathematics Series; Harlow Publishing Company: Harlow, UK; John Wiley: New York, NY, USA, 1994. [Google Scholar]
- Kochubei, A.; Luchko, Y. Handbook of Fractional Calculus with Applications; Volume 1: Basic Theory, Volume 2: Fractional Differential Equations; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Luchko, Y. General fractional integrals and derivatives and their applications. Phys. D Nonlinear Phenom. 2023, 455, 133906. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. The General Fractional Integrals and Derivatives on a Finite Interval. Mathematics 2023, 11, 1031. [Google Scholar] [CrossRef]
- Fernandez, A.; Fahad, H.M. Weighted fractional calculus: A general class of operators. Fractal Fract. 2022, 6, 208. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Heisenberg Equation. Phys. Lett. A 2006, 372, 2984–2988. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K. Fractional Poisson Bracket. Turk. J. Phys. 2008, 32, 241–250. [Google Scholar]
- Rabei, E.M.; Tarawneh, D.M.; Muslih, S.I.; Baleanu, D. Heisenberg’s Equations of Motion with Fractional Derivatives. J. Vib. Control 2007, 13, 1239–1247. [Google Scholar] [CrossRef]
- Laskin, N. Fractional Schrödinger equation. Phys. Rev. 2002, E 66, 056108. [Google Scholar] [CrossRef]
- Kolokoltsov, V.N. Continuous time random walks modeling of quantum measurement and fractional equations of quantum stochastic filtering and control. Fract. Calc. Appl. Anal. 2022, 25, 128–165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolokoltsov, V.N.; Shishkina, E.L. Fractional Calculus for Non-Discrete Signed Measures. Mathematics 2024, 12, 2804. https://doi.org/10.3390/math12182804
Kolokoltsov VN, Shishkina EL. Fractional Calculus for Non-Discrete Signed Measures. Mathematics. 2024; 12(18):2804. https://doi.org/10.3390/math12182804
Chicago/Turabian StyleKolokoltsov, Vassili N., and Elina L. Shishkina. 2024. "Fractional Calculus for Non-Discrete Signed Measures" Mathematics 12, no. 18: 2804. https://doi.org/10.3390/math12182804
APA StyleKolokoltsov, V. N., & Shishkina, E. L. (2024). Fractional Calculus for Non-Discrete Signed Measures. Mathematics, 12(18), 2804. https://doi.org/10.3390/math12182804