Bayesian Model Selection for Addressing Cold-Start Problems in Partitioned Time Series Prediction
Abstract
:1. Introduction
- Insufficient length of observed time series: It is typically recommended that a sample size of at least 50 should be used for data analysis, though this is not a strict rule [6]. The necessary sample size can vary depending on data characteristics, domain, and analysis methods [7,8]. A cold-start problem exists if available data are insufficient and below the suggested minimum sample size. This scenario can greatly affect the reliability and accuracy of analyses performed.
- Incomplete cyclical or seasonal variation: To achieve accurate predictions, it is necessary to observe a complete cycle for time series exhibiting seasonal or cyclical variations. If available data only cover a partial cycle, as illustrated in Figure 1, it becomes challenging to identify repeating patterns and make accurate forecasts. This limitation can significantly hinder the effectiveness of predictive analytics in such cases.
- Post-structural break and insufficient data: The occurrence of structural breaks in a time series with significant shifts in data distribution further complicates the process of forecasting [9]. As illustrated in Figure 2, inadequate data collection following a structural break can hinder the ability to forecast future trends accurately. This limitation is critical as it affects the prediction of whether the observed anomaly will lead to further structural changes.
- Lack of data on specific features or items: The introduction of new features or items into a dataset can present forecasting challenges when these additions lack sufficient data to support them. To understand and predict the impact of these new elements, it is necessary to have adequate historical data. To make reliable predictions, it is necessary to have a robust dataset that captures the characteristics of new elements fully.
- How can we accurately predict time series outcomes when only limited data are initially available?
- Among various candidate models proposed, which is most likely to have generated the observed time series data?
- How effectively can Bayesian model selection overcome challenges presented by the cold-start problem in time series prediction?
- This paper demonstrates how Bayesian model selection can enhance forecasting accuracy when traditional methods are inadequate due to a lack of data. A robust framework is presented to generate reliable forecasts from limited observations, ensuring that predictions remain viable even when datasets are sparse.
- The proposed innovative approach incorporates prior knowledge into model selection, which is of value when historical data are unavailable or do not reflect current circumstances. Integrating prior knowledge makes model predictions more reliable in challenging situations.
- The proposed visualization techniques can simplify complex Bayesian results, increasing stakeholder understanding and confidence in model predictions. This approach enables a deeper comprehension of statistical outcomes, improving the decision-making quality.
2. Related Work
- This study is focused on TSF, whereas most of the related studies have concentrated on recommendation systems or anomaly detection. The proposed approach addresses challenges of insufficient data by partitioning time series data and applying Bayesian inference to select the most probable model. R version 4.3.3 (R Foundation for Statistical Computing, Vienna, Austria) and RStudio version 2023.12.1.402 (Posit Software, PBC, Boston, MA, USA) were used as computational tools to ensure accurate and reproducible results. This approach contrasts with those of other studies, which often rely on augmenting the data with additional information or using hybrid models.
- The proposed approach is tailored to numeric time series data, whereas related studies often involve categorical data in recommendation systems or mixed data types in anomaly detection. In addition, the proposed approach differs from previous studies in that Bayesian model selection is employed, which is distinct from typical methods used in related work, such as collaborative filtering, matrix factorization, and deep learning techniques.
3. Bayesian Time Series Analysis
3.1. Bayesian Model Selection
(p[X|Modelm] ⋅ p[Modelm])/Σ (from i = 1 to M) (p[X|Modeli] ⋅ p[Modeli]),
3.2. Partitioned Time Series
- Observed data are denoted by X = {x1, x2, …, xu};
- Given M candidate models, each is denoted by Modelm = Ym = {ym,1, ym,2, …, ym,nm}, where m = 1, 2, …, M, and nm is the length of Modelm.
- When new data arrive, all existing data are not needed, reducing the burden even when data continue to stream in real time;
- This approach is advantageous for addressing structural breaks in model data. It decreases the need for complex analyses considering nonstationarity, reducing the burden of addressing long-term time series;
- This approach simplifies handling missing data. Although this study employs a method that entirely excludes missing data, imputation is possible when necessary. Splitting data into shorter segments can offset irregularities, facilitating imputation;
- Distributed computing is feasible. The process of determining the relationship between each partitioned data point pm and the observed data point X, denoted as r(pm,j, X), can be managed in parallel.
3.3. Analysis of Similarity between Observed and Partitioned Data
3.3.1. Measuring the Distance between Observed and Partitioned Data
3.3.2. Statistical Testing between Observed and Partitioned Data
3.4. Analytical Procedures
- Data for each candidate model are partitioned. This study followed the method described in Section 3.2 to partition data from each candidate model (designated as pm). If M candidate models exist, M partitioned datasets pm are also generated. If the length of observed data is u, each partitioned dataset is also set to length u. If data are standardized, standardization is applied separately to each pm;
- Users must determine whether to use a distance measure or a statistical test to calculate r(pm,j, X). If distance is chosen, r(pm,j, X) is determined by d(pm,j, X), measuring direct discrepancies between datasets. If a statistical test is selected, r(pm,j, X) corresponds to a p-value that evaluates the independence between pm,j and X, indicating the likelihood of a statistical relationship;
- When a statistical test is employed to determine r(pm,j, X), trend differences between pm,j and X are not assessable. Therefore, test results for the trend must also be considered. Trend tests for pm,j and X are conducted to obtain p-values. Closer trends of pm,j and X indicate a smaller difference between p-values from trend tests of pm,j and X, which results in a value that approaches zero;
- When calculating marginal likelihood, because qm instances of pm,j exist, qm instances of r(pm,j, X) are also attained. By setting a significance level for r(pm,j, X), the probability p[X|Modelm] can be calculated, indicating the likelihood of X belonging to Modelm. Probability calculations regarding significance levels are detailed in Equations (3) and (4):p[X∣Modelm] = p[r(pm,j, X) ≤ SignIf.indep.],p[X∣Modelm] = p[(p-valueindep.(pm,j, X) ≤ SignIf.indep.)/(p-valuetrend.(pm,j) ≤ SignIf.trend)];
- Posterior probability is calculated using the method described in Equation (2). The prior probability is uniformly assigned across all M candidate models. Comparing posterior probabilities across all M candidate models could identify the model that most likely generated observed data X, enhancing our understanding of the reliability of the model.
4. Results
4.1. Statistical Testing or Distance
4.2. Synthetic Model
- Stationary time series: The model is considered stable when σ2 is less than 1. Although diversifying a stable model is challenging, variations can be introduced in the range, where 0 < σ2 < 1, μ = 0, and 0 < α <1;
- Unstable variance: The σ value should be set to ≥1 because a larger σ2 yields more dynamic movement in the data;
- Trend changes: The μ value can be applied to determine a stochastic trend. No trend exists when μ = 0. If μ > 0, an upward trend exists. If μ < 0, a downward trend exists. A larger absolute value of μ indicates a steeper trend slope;
- Presence of a unit root: The α term is the coefficient. For a nonstationary model, α should be set to ≥1. If α = 1, a unit root is present.
4.3. Practical Applications in the Energy Sector
4.4. Discussion
- Type A: AR(1), ym,t = φ0 + φm,1yt−1 + εt;
- Type B: AR(2), ym,t = φ0 + φm,1yt−1 + φm,2yt−2 + εt;
- Type C: MA(1), ym,t = θ0 + θm,1yt−1 + εt;
- Type D: MA(2), ym,t = θ0 + θm,1yt−1 + θ0 + θm,2yt−2 + εt;
- Type E: ARMA(1), ym,t = φ0 + φm,1yt−1 + θm,1yt−1 + εt;
- Type F: ARMA(2), ym,t = φ0 + φm,1yt−1 + φ0 + φm,2yt−2 + θm,1yt−1 + θm,2yt−2 + εtwhere m = 1, …, 5, εt ~ N(0, 12), t = 1, …, 3600;
- φ1,1 = 0.1, φ2,1 = 0.3, φ3,1 = 0.5, φ4,1 = 0.7, φ5,1 = 0.9;
- φ1,2 = −0.1, φ2,2 = −0.3, φ3,2 = −0.5, φ4,2 = −0.7, φ5,2 = −0.9;
- θ1,1 = 0.1, θ2,1 = 0.3, θ3,1 = 0.5, θ4,1 = 0.7, θ5,1 = 0.9;
- θ1,2 = −0.1, θ2,2 = −0.3, θ3,2 = −0.5, θ4,2 = −0.7, θ5,2 = −0.9.
- p1 = φ1 = {0, 0.1, 0.5, 0.9};
- p2 = φ2 = {0, −0.1, −0.5, −0.9};
- q1 = θ1 = {0, 0.1, 0.5, 0.9};
- q2 = θ2 = {0, −0.1, −0.5, −0.9};
- σ = {0.1, 0.5, 1, 2, 3}.
5. Visualization
6. Conclusions
- Our findings demonstrate that Bayesian model selection can significantly enhance predictive accuracy when faced with sparse data. By partitioning models and analyzing each vector with statistical tests, we bypassed the traditional reliance on distance measures. This approach was proven to be particularly beneficial in scenarios where the conventional methods would likely fail due to insufficient data.
- Another significant contribution of this study is the development of a new visualization technique that employs a slide bar for interactively setting significance levels. This method stands in stark contrast to traditional star-marked displays. It offers a dynamic tool for researchers to adjust and interpret significance with greater clarity, thus reducing potential misunderstandings about p-value implications.
- The operational aspect of employing Bayesian model selection in real-world scenarios was also explored. We found that once the observational data aligned with a candidate model, effective predictions could be made using the model. However, this is contingent upon assumptions of stationarity and the absence of structural breaks, which our research identified as areas requiring further investigation to fully harness the potential of using Bayesian methods for solving cold-start problems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stachl, C.; Pargent, F.; Hilbert, S.; Harari, G.M.; Schoedel, R.; Vaid, S.; Bühner, M. Personality research and assessment in the era of machine learning. Eur. J. Personal. 2020, 34, 613–631. [Google Scholar] [CrossRef]
- Abdelrahman, G.; Wang, Q.; Nunes, B. Knowledge tracing: A survey. ACM Comput. Surv. 2023, 55, 224. [Google Scholar] [CrossRef]
- Herlocker, J.L.; Konstan, J.A.; Terveen, L.G.; Riedl, J.T. Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 2004, 22, 5–53. [Google Scholar] [CrossRef]
- Hasselmann, K.; Sausen, R.; Maier-Reimer, E.; Voss, R. On the cold start problem in transient simulations with coupled atmosphere-ocean models. Clim. Dyn. 1993, 9, 53–61. [Google Scholar] [CrossRef]
- Liu, H.; Ong, Y.S.; Shen, X.; Cai, J. When Gaussian process meets big data: A review of scalable GPs. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4405–4423. [Google Scholar] [CrossRef] [PubMed]
- Hanke, J.E.; Wichern, D. Business Forecasting, 9th ed.; Pearson: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Thomas, L. Retrospective power analysis. Conserv. Biol. 1997, 11, 276–280. [Google Scholar] [CrossRef]
- Legg, C.; Nagy, L. Why most conservation monitoring is, but need not be, a waste of time. J. Environ. Manag. 2006, 78, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.E. The new econometrics of structural change: Dating breaks in U.S. labor productivity. J. Econ. Perspect. 2001, 15, 117–128. [Google Scholar] [CrossRef]
- Chow, G.C.; Lin, A.L. Best linear unbiased interpolation, distribution, and extrapolation of time series by related series. Rev. Econ. Stat. 1971, 53, 372–375. [Google Scholar] [CrossRef]
- Denton, F.T. Adjustment of monthly or quarterly series to annual totals: An approach based on quadratic minimization. J. Am. Stat. Assoc. 1971, 66, 99–102. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Zhang, G.P.; Qi, M. Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 2005, 160, 501–514. [Google Scholar] [CrossRef]
- Puma-Villanueva, W.J.; dos Santos, E.P.; Von Zuben, F.J. Data Partition and Variable Selection for Time Series Prediction Using Wrappers. In Proceedings of the 2006 IEEE International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 16–21 July 2006; pp. 4740–4747. [Google Scholar]
- Puma-Villanueva, W.J.; dos Santos, E.P.; Von Zuben, F.J. Long-Term Time Series Prediction Using Wrappers for Variable Selection and Clustering for Data Partition. In Proceedings of the 2007 IEEE International Joint Conference on Neural Networks (IJCNN), Orlando, FL, USA, 12–17 August 2007; pp. 3068–3073. [Google Scholar]
- Sarkar, S.; Mukherjee, K.; Jin, X.; Ray, A. Optimization of Time-Series Data Partitioning for Parameter Identification in Nonlinear Dynamical Systems. In Proceedings of the ASME 2010 Dynamic Systems and Control Conference (DSCC2010), Cambridge, MA, USA, 12–15 September 2010; Volume 1, pp. 867–874. [Google Scholar]
- Leverger, C.; Lemaire, V.; Malinowski, S.; Guyet, T.; Roze, L. Day-Ahead Time Series Forecasting: Application to Capacity Planning. In Proceedings of the 3rd Workshop on Advanced Analytics and Learning of Temporal Data (AALTD), Dublin, Ireland, 10–14 September 2018. [Google Scholar]
- Xie, C.; Tank, A.; Fox, E. A Unified Framework for Missing Data and Cold Start Prediction for Time Series Data. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Xu, X.; Yang, C.; Yu, Q.; Fang, Z.; Wang, J.; Fan, C.; He, Y.; Peng, C.; Lin, Z.; Shao, J. Alleviating Cold-Start Problem in CTR Prediction with a Variational Embedding Learning Framework. In Proceedings of the ACM Web Conference 2022, Virtual, 25–29 April 2022; pp. 27–35. [Google Scholar]
- AlRossais, N.; Kudenko, D.; Yuan, T. Improving cold-start recommendations using item-based stereotypes. User Model. User-Adap. Interact. 2021, 31, 867–905. [Google Scholar] [CrossRef]
- Pirasteh, P.; Bouguelia, M.R.; Santosh, K.C. Personalized recommendation: An enhanced hybrid collaborative filtering. Adv. Comput. Intell. 2021, 1, 1. [Google Scholar] [CrossRef]
- Rohani, V.A.; Kasirun, Z.M.; Kumar, S.; Shamshirband, S. An Effective Recommender Algorithm for Cold-Start Problem in Academic Social Networks. Math. Probl. Eng. 2014, 2014, 123726. [Google Scholar] [CrossRef]
- Ni, L.; Wang, S.; Zhang, Z.; Li, X.; Zheng, X.; Denny, P.; Liu, J. Enhancing Student Performance Prediction on Learner-Sourced Questions with Sgnn-Llm Synergy. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–12 March 2024; Volume 38, pp. 23232–23240. [Google Scholar]
- Tey, F.J.; Wu, T.Y.; Lin, C.L.; Chen, J.L. Accuracy improvements for cold-start recommendation problem using indirect relations in social networks. J. Big Data 2021, 8, 98. [Google Scholar] [CrossRef]
- Kuznetsov, S.; Kordík, P. Overcoming the Cold-Start Problem in Recommendation Systems with Ontologies and Knowledge Graphs. In Proceedings of the European Conference on Advances in Databases and Information Systems, Vienna, Austria, 5–8 August 2023; Springer: Cham, Switzerland, 2023; pp. 591–603. [Google Scholar]
- Li, H.; Xu, H.; Peng, W. Deep Reinforced Active Learning for Time Series Anomaly Detection. In Proceedings of the International Conference on Intelligent Computing, Singapore, 3–6 July 2023; Springer: Singapore, 2023; pp. 115–128. [Google Scholar]
- Fatemi, Z.; Huynh, M.; Zheleva, E.; Syed, Z.; Di, X. Mitigating Cold-Start Problem Using Cold Causal Demand Forecasting Model. arXiv 2023, arXiv:2306.09261. [Google Scholar]
- Xie, C.; Tank, A.; Greaves-Tunnell, A.; Fox, E. A Unified Framework for Long Range and Cold Start Forecasting of Seasonal Profiles in Time Series. arXiv 2017, arXiv:1710.08473. [Google Scholar]
- Ryu, D.; Lee, K.; Baik, J. Location-based web service QoS prediction via preference propagation to address cold start problem. IEEE Trans. Serv. Comput. 2018, 14, 736–746. [Google Scholar] [CrossRef]
- Chen, M.; Xu, Z.; Zeng, A.; Xu, Q. Fraug: Frequency Domain Augmentation for Time Series Forecasting. arXiv 2023, arXiv:2302.09292. [Google Scholar]
- Ebrahimi, A.; Ghobaei-Arani, M.; Saboohi, H. Cold start latency mitigation mechanisms in serverless computing: Taxonomy, review, and future directions. J. Syst. Archit. 2024, 151, 103115. [Google Scholar] [CrossRef]
- European Network of Transmission System Operators for Electricity (ENTSO-E). ENTSO-E Transparency Platform. Available online: https://transparency.entsoe.eu (accessed on 1 July 2024).
Authors | Key Techniques | Evaluation | Difference from This Research |
---|---|---|---|
Fatemi et al. [19] | Integrates causal inference with deep learning, GNNs, LSTM, GMM, Eros | Outperformed traditional methods on cold-start scenarios | Focuses on deep learning and causal inference, not Bayesian model selection |
Xu et al. [20] | Probabilistic embeddings, variational inference, regularized priors | Significant improvements in cold-start scenarios | Uses variational inference rather than Bayesian methods for a time series |
AlRossais et al. [21] | Item-based stereotypes, metadata independent of user item ratings | Superior to traditional SVD-based approaches | Targets recommendation systems, not TSF |
Pirasteh et al. [22] | Combines multiple similarity measures, integrates user and item similarities | Outperformed conventional CF techniques in cold-start conditions | Focuses on collaborative filtering, not Bayesian methods or time series data |
Rohani et al. [23] | User preferences, hierarchical preference tree structure | Significantly improved recommendation accuracy | Employs social networking for recommendations, not applicable to TSF |
Ni et al. [24] | SGNNs, LLM embeddings, contrastive learning framework | Outperformed existing baselines | Focuses on student performance prediction, different domains, and methods |
Tey et al. [25] | Indirect relations, user preferences, social media interactions | Significant improvements in recommendation accuracy | Applies social network data, unrelated to TSF |
Kuznetsov and Kordík [26] | Ontologies, knowledge graphs, semantic layer in text-based methods | Effective compared with state-of-the-art text feature extraction techniques | Uses knowledge graphs and ontologies, unlike Bayesian inference |
Li et al. [27] | Reinforced active learning, human-in-the-loop, anomaly scoring | Outperformed five state-of-the-art models | Focuses on anomaly detection, not general TSF |
Xie et al. [28] | High-dimensional regression, matrix factorization, leveraging metadata | Robust performance across multiple datasets | Employs regression and matrix factorization, not Bayesian model selection |
Ryu et al. [29] | Invocation similarity, neighborhood similarity, location data | Better performance in cold- and warm-start scenarios | Uses matrix factorization for web services, different applications and methods |
Xie et al. [18] | Repeated patterns, low-rank decompositions, metadata weightings | Accurate predictions and imputes missing values | Focuses on missing data and long-range forecasts, different approaches |
Chen et al. [31] | Frequency domain data augmentation, frequency masking, frequency mixing | Enhanced forecasting accuracy, mitigated performance degradation | Uses data augmentation techniques, not Bayesian methods |
Ebrahimi et al. [32] | Application-based, checkpoint-based, invocation time prediction-based, cache-based | Discussed various methods and evaluated their effectiveness | Focuses on serverless computing, not TSF |
Name | r(pm,j, X) Formula | Family |
---|---|---|
Squared Euclidean | ∑[X − pm,j]2 | Squared L2 family (χ2 family) |
Pearson 1 | ∑[(X − pm,j)2/pm,j] | Squared L2 family (χ2 family) |
Neyman | ∑[(X − pm,j)2/X] | Squared L2 family (χ2 family) |
Squared chi | ∑[(X − pm,j)2/(X + pm,j)] | Squared L2 family (χ2 family) |
Prob. symmetric | 2 × ∑[(X − pm,j)2/(X + pm,j)] | Squared L2 family (χ2 family) |
Divergence | 2 × ∑[(X − pm,j)2/(X + pm,j)2] | Squared L2 family (χ2 family) |
Clark | √(∑[|X − pm,j|/(X + pm,j)2]) | Squared L2 family (χ2 family) |
L2 norm | (|X − pm,j|)1/2 | Lp Minkowski family |
Manhattan | ∑|X − pm,j| | Lp Minkowski family |
Chebyshev | max|X − pm,j| | Lp Minkowski family |
Sorensen | (∑|X − pm,j|)/(∑(X − pm,j)) | L1 family |
Gower | 1/d × ∑|X − pm,j| | L1 family |
Kulczynski’s D | (∑|X − pm,j|)/(∑[max(X, pm,j)]) | L1 family |
Canberra | (∑|X − pm,j|)/(∑[min(X, pm,j)]) | L1 family |
Lorentzian | ∑[log(1 + |X − pm,j|)] | L1 family |
Intersection | ∑[min(X, pm,j)] | Intersection family |
Nonintersection | 1 − ∑[min(X, pm,j)] | Intersection family |
Wage hedges | (∑|X − pm,j|)/max(X, pm,j) | Intersection family |
Czeanowski | (∑|X − pm,j|)/(∑|X + pm,j|) | Intersection family |
Motyka | (∑[min|X − pm,j|])/(∑|X + pm,j|) | Intersection family |
Inner product | ∑(X × pm,j) | Inner product family |
Harmonic mean | 2 × ∑[(X × pm,j)/(X + pm,j)] | Inner product family |
Cosine | (∑[X × pm,j])/√(∑X2) × √(∑(pm,j)2) | Inner product family |
Kumar–Hassebrook | (∑[X × pm,j])/(∑X2 + ∑(pm,j)2 − ∑(X × pm,j)) | Inner product family |
Dice | (∑[X − pm,j]2)/(∑X2 + ∑(pm,j)2) | Etc. |
Wasserstein | infγ∈(P_r,P_g)Ex,y∼γ[‖X − pm,j‖] | Etc. |
Category | Model Label | Mean μ | Standard Deviation σ | Autoregressive Coefficient α |
---|---|---|---|---|
Stationary Time Series | A | 0.0 | 0.2 | 0.5 |
B | 0.0 | 0.4 | 0.5 | |
C | 0.0 | 0.6 | 0.5 | |
D | 0.0 | 0.8 | 0.5 | |
E | 0.0 | 1.0 | 0.5 | |
Unstable Variance | A | 0.0 | 1.2 | 0.5 |
B | 0.0 | 1.4 | 0.5 | |
C | 0.0 | 1.6 | 0.5 | |
D | 0.0 | 1.8 | 0.5 | |
E | 0.0 | 2.0 | 0.5 | |
Trend Changes | A | 0.5 | 1.0 | 1.0 |
B | 1.0 | 1.0 | 1.0 | |
C | 2.0 | 1.0 | 1.0 | |
D | −0.5 | 1.0 | 1.0 | |
E | −1.0 | 1.0 | 1.0 | |
F | −2.0 | 1.0 | 1.0 | |
Presence of a Unit Root | A | 0.0 | 1.0 | 0.2 |
B | 0.0 | 1.0 | 0.4 | |
C | 0.0 | 1.0 | 0.6 | |
D | 0.0 | 1.0 | 0.8 | |
E | 0.0 | 1.0 | 1.0 |
Distance Measure | SignIf. | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | Distance Measure | SignIf. | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Squared Euclidean | A | 0.025 | 0.058 | 0.096 | 0.135 | 0.176 | Lorentzian | A | 0.021 | 0.056 | 0.090 | 0.131 | 0.175 |
B | 0.022 | 0.059 | 0.103 | 0.142 | 0.180 | B | 0.022 | 0.059 | 0.103 | 0.144 | 0.180 | ||
C | 0.018 | 0.067 | 0.103 | 0.141 | 0.179 | C | 0.019 | 0.067 | 0.108 | 0.147 | 0.183 | ||
D | 0.015 | 0.056 | 0.102 | 0.142 | 0.183 | D | 0.019 | 0.058 | 0.101 | 0.141 | 0.182 | ||
E | 0.021 | 0.059 | 0.095 | 0.141 | 0.182 | E | 0.020 | 0.059 | 0.097 | 0.137 | 0.180 | ||
Pearson | A | 0.019 | 0.060 | 0.095 | 0.140 | 0.180 | Intersection | A | 0.025 | 0.069 | 0.107 | 0.142 | 0.181 |
B | 0.020 | 0.062 | 0.106 | 0.145 | 0.182 | B | 0.021 | 0.058 | 0.100 | 0.140 | 0.176 | ||
C | 0.018 | 0.050 | 0.088 | 0.131 | 0.180 | C | 0.017 | 0.055 | 0.091 | 0.136 | 0.182 | ||
D | 0.021 | 0.066 | 0.108 | 0.141 | 0.180 | D | 0.019 | 0.058 | 0.098 | 0.143 | 0.182 | ||
E | 0.022 | 0.062 | 0.103 | 0.143 | 0.179 | E | 0.018 | 0.061 | 0.104 | 0.140 | 0.180 | ||
Neyman | A | 0.019 | 0.061 | 0.099 | 0.138 | 0.180 | Nonintersection | A | 0.019 | 0.058 | 0.093 | 0.131 | 0.175 |
B | 0.022 | 0.060 | 0.096 | 0.138 | 0.178 | B | 0.024 | 0.060 | 0.100 | 0.142 | 0.179 | ||
C | 0.020 | 0.062 | 0.104 | 0.143 | 0.180 | C | 0.018 | 0.064 | 0.109 | 0.145 | 0.183 | ||
D | 0.022 | 0.058 | 0.101 | 0.143 | 0.179 | D | 0.018 | 0.057 | 0.102 | 0.142 | 0.181 | ||
E | 0.018 | 0.059 | 0.099 | 0.139 | 0.184 | E | 0.020 | 0.060 | 0.096 | 0.139 | 0.182 | ||
Squared chi | A | 0.020 | 0.057 | 0.097 | 0.136 | 0.180 | Wave hedges | A | 0.021 | 0.063 | 0.100 | 0.136 | 0.179 |
B | 0.018 | 0.059 | 0.101 | 0.141 | 0.178 | B | 0.019 | 0.059 | 0.099 | 0.141 | 0.181 | ||
C | 0.020 | 0.061 | 0.101 | 0.143 | 0.182 | C | 0.017 | 0.050 | 0.090 | 0.135 | 0.180 | ||
D | 0.019 | 0.060 | 0.099 | 0.140 | 0.179 | D | 0.021 | 0.063 | 0.107 | 0.145 | 0.180 | ||
E | 0.023 | 0.063 | 0.102 | 0.141 | 0.182 | E | 0.022 | 0.065 | 0.103 | 0.143 | 0.180 | ||
Prob. symmetric | A | 0.020 | 0.057 | 0.097 | 0.136 | 0.180 | Czekanowski | A | 0.022 | 0.057 | 0.100 | 0.144 | 0.181 |
B | 0.018 | 0.059 | 0.101 | 0.141 | 0.178 | B | 0.018 | 0.061 | 0.103 | 0.143 | 0.182 | ||
C | 0.020 | 0.061 | 0.101 | 0.143 | 0.182 | C | 0.018 | 0.056 | 0.101 | 0.139 | 0.180 | ||
D | 0.019 | 0.060 | 0.099 | 0.140 | 0.179 | D | 0.024 | 0.065 | 0.099 | 0.136 | 0.180 | ||
E | 0.023 | 0.063 | 0.102 | 0.141 | 0.182 | E | 0.018 | 0.061 | 0.097 | 0.138 | 0.177 | ||
Divergence | A | 0.018 | 0.057 | 0.101 | 0.140 | 0.180 | Motyka | A | 0.022 | 0.057 | 0.100 | 0.144 | 0.181 |
B | 0.020 | 0.061 | 0.100 | 0.140 | 0.181 | B | 0.018 | 0.061 | 0.103 | 0.143 | 0.182 | ||
C | 0.019 | 0.062 | 0.100 | 0.143 | 0.180 | C | 0.018 | 0.056 | 0.101 | 0.139 | 0.180 | ||
D | 0.022 | 0.063 | 0.101 | 0.138 | 0.182 | D | 0.024 | 0.065 | 0.099 | 0.136 | 0.180 | ||
E | 0.020 | 0.056 | 0.098 | 0.139 | 0.177 | E | 0.018 | 0.061 | 0.097 | 0.138 | 0.177 | ||
Clark | A | 0.018 | 0.057 | 0.101 | 0.140 | 0.180 | Inner product | A | 0.023 | 0.065 | 0.103 | 0.141 | 0.176 |
B | 0.020 | 0.061 | 0.100 | 0.140 | 0.181 | B | 0.021 | 0.060 | 0.099 | 0.141 | 0.177 | ||
C | 0.019 | 0.062 | 0.100 | 0.143 | 0.180 | C | 0.022 | 0.060 | 0.095 | 0.133 | 0.182 | ||
D | 0.022 | 0.063 | 0.101 | 0.138 | 0.182 | D | 0.017 | 0.056 | 0.098 | 0.143 | 0.185 | ||
E | 0.020 | 0.056 | 0.098 | 0.139 | 0.177 | E | 0.018 | 0.060 | 0.105 | 0.142 | 0.179 | ||
L2 norm | A | 0.025 | 0.058 | 0.096 | 0.135 | 0.176 | Harmonic mean | A | 0.020 | 0.064 | 0.103 | 0.143 | 0.180 |
B | 0.022 | 0.059 | 0.103 | 0.142 | 0.180 | B | 0.022 | 0.059 | 0.099 | 0.141 | 0.182 | ||
C | 0.018 | 0.067 | 0.103 | 0.141 | 0.179 | C | 0.018 | 0.057 | 0.099 | 0.140 | 0.180 | ||
D | 0.015 | 0.056 | 0.102 | 0.142 | 0.183 | D | 0.021 | 0.060 | 0.101 | 0.140 | 0.181 | ||
E | 0.021 | 0.059 | 0.095 | 0.141 | 0.182 | E | 0.018 | 0.059 | 0.097 | 0.136 | 0.177 | ||
Manhattan | A | 0.022 | 0.057 | 0.092 | 0.131 | 0.176 | Cosine | A | 0.024 | 0.065 | 0.103 | 0.141 | 0.176 |
B | 0.022 | 0.056 | 0.104 | 0.143 | 0.180 | B | 0.020 | 0.060 | 0.099 | 0.141 | 0.178 | ||
C | 0.018 | 0.067 | 0.109 | 0.143 | 0.181 | C | 0.022 | 0.059 | 0.095 | 0.133 | 0.182 | ||
D | 0.017 | 0.059 | 0.100 | 0.143 | 0.181 | D | 0.017 | 0.056 | 0.098 | 0.143 | 0.185 | ||
E | 0.021 | 0.060 | 0.095 | 0.140 | 0.181 | E | 0.017 | 0.060 | 0.105 | 0.142 | 0.180 | ||
Chebyshev | A | 0.028 | 0.071 | 0.114 | 0.153 | 0.188 | Kumar–Hassebrook | A | 0.024 | 0.065 | 0.103 | 0.141 | 0.176 |
B | 0.016 | 0.059 | 0.098 | 0.137 | 0.180 | B | 0.020 | 0.060 | 0.099 | 0.141 | 0.178 | ||
C | 0.016 | 0.054 | 0.093 | 0.134 | 0.176 | C | 0.022 | 0.059 | 0.095 | 0.133 | 0.182 | ||
D | 0.020 | 0.057 | 0.100 | 0.140 | 0.180 | D | 0.017 | 0.056 | 0.098 | 0.143 | 0.185 | ||
E | 0.022 | 0.059 | 0.096 | 0.136 | 0.177 | E | 0.017 | 0.060 | 0.105 | 0.142 | 0.180 | ||
Sorensen | A | 0.022 | 0.057 | 0.100 | 0.144 | 0.181 | Dice | A | 0.024 | 0.059 | 0.097 | 0.135 | 0.176 |
B | 0.018 | 0.061 | 0.103 | 0.143 | 0.182 | B | 0.022 | 0.059 | 0.101 | 0.140 | 0.180 | ||
C | 0.018 | 0.056 | 0.101 | 0.139 | 0.180 | C | 0.018 | 0.067 | 0.105 | 0.141 | 0.178 | ||
D | 0.024 | 0.065 | 0.099 | 0.136 | 0.180 | D | 0.015 | 0.057 | 0.102 | 0.144 | 0.183 | ||
E | 0.018 | 0.061 | 0.097 | 0.138 | 0.177 | E | 0.020 | 0.058 | 0.095 | 0.140 | 0.183 | ||
Gower | A | 0.022 | 0.057 | 0.092 | 0.131 | 0.176 | Wasserstein | A | 0.048 | 0.104 | 0.148 | 0.175 | 0.194 |
B | 0.022 | 0.056 | 0.104 | 0.143 | 0.180 | B | 0.023 | 0.073 | 0.109 | 0.146 | 0.182 | ||
C | 0.018 | 0.067 | 0.109 | 0.143 | 0.181 | C | 0.016 | 0.049 | 0.086 | 0.127 | 0.159 | ||
D | 0.017 | 0.059 | 0.100 | 0.143 | 0.181 | D | 0.012 | 0.037 | 0.069 | 0.114 | 0.184 | ||
E | 0.021 | 0.060 | 0.095 | 0.140 | 0.181 | E | 0.002 | 0.038 | 0.087 | 0.138 | 0.180 | ||
Kulczynski‘s D | A | 0.012 | 0.044 | 0.109 | 0.162 | 0.184 | Kolmogorov–Smirnov | A | 0.038 | 0.078 | 0.128 | 0.162 | 0.181 |
B | 0.051 | 0.121 | 0.146 | 0.173 | 0.195 | B | 0.029 | 0.078 | 0.107 | 0.141 | 0.155 | ||
C | 0.028 | 0.069 | 0.103 | 0.135 | 0.191 | C | 0.004 | 0.034 | 0.070 | 0.108 | 0.156 | ||
D | 0.002 | 0.041 | 0.094 | 0.141 | 0.182 | D | 0.008 | 0.034 | 0.055 | 0.095 | 0.171 | ||
E | 0.006 | 0.024 | 0.048 | 0.089 | 0.149 | E | 0.016 | 0.053 | 0.109 | 0.148 | 0.178 | ||
Canberra | A | 0.022 | 0.059 | 0.099 | 0.141 | 0.180 | Runs | A | 0.012 | 0.052 | 0.083 | 0.125 | 0.161 |
B | 0.018 | 0.059 | 0.099 | 0.139 | 0.178 | B | 0.009 | 0.048 | 0.084 | 0.138 | 0.172 | ||
C | 0.018 | 0.061 | 0.100 | 0.141 | 0.180 | C | 0.012 | 0.053 | 0.088 | 0.131 | 0.171 | ||
D | 0.022 | 0.059 | 0.099 | 0.139 | 0.180 | D | 0.010 | 0.052 | 0.092 | 0.134 | 0.171 | ||
E | 0.021 | 0.061 | 0.103 | 0.140 | 0.182 | E | 0.010 | 0.053 | 0.086 | 0.128 | 0.167 |
Distance Measure | SignIf. | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | Distance Measure | SignIf. | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Squared Euclidean | A | 0.017 | 0.059 | 0.099 | 0.140 | 0.179 | Lorentzian | A | 0.019 | 0.056 | 0.095 | 0.138 | 0.177 |
B | 0.020 | 0.062 | 0.102 | 0.140 | 0.181 | B | 0.021 | 0.064 | 0.102 | 0.140 | 0.181 | ||
C | 0.022 | 0.062 | 0.100 | 0.139 | 0.181 | C | 0.021 | 0.061 | 0.106 | 0.145 | 0.184 | ||
D | 0.021 | 0.060 | 0.098 | 0.141 | 0.178 | D | 0.020 | 0.059 | 0.098 | 0.137 | 0.178 | ||
E | 0.020 | 0.057 | 0.101 | 0.139 | 0.181 | E | 0.019 | 0.061 | 0.099 | 0.141 | 0.180 | ||
Pearson | A | 0.019 | 0.058 | 0.101 | 0.139 | 0.179 | Intersection | A | 0.022 | 0.061 | 0.104 | 0.142 | 0.180 |
B | 0.017 | 0.052 | 0.097 | 0.144 | 0.182 | B | 0.020 | 0.061 | 0.101 | 0.139 | 0.180 | ||
C | 0.021 | 0.062 | 0.097 | 0.136 | 0.182 | C | 0.017 | 0.058 | 0.097 | 0.137 | 0.180 | ||
D | 0.024 | 0.065 | 0.104 | 0.140 | 0.179 | D | 0.022 | 0.063 | 0.100 | 0.140 | 0.180 | ||
E | 0.019 | 0.063 | 0.101 | 0.141 | 0.178 | E | 0.020 | 0.058 | 0.098 | 0.142 | 0.180 | ||
Neyman | A | 0.022 | 0.062 | 0.100 | 0.142 | 0.182 | Nonintersection | A | 0.020 | 0.058 | 0.096 | 0.139 | 0.178 |
B | 0.020 | 0.060 | 0.099 | 0.142 | 0.180 | B | 0.020 | 0.061 | 0.099 | 0.139 | 0.180 | ||
C | 0.021 | 0.057 | 0.099 | 0.137 | 0.180 | C | 0.020 | 0.063 | 0.103 | 0.142 | 0.183 | ||
D | 0.017 | 0.064 | 0.102 | 0.141 | 0.177 | D | 0.020 | 0.060 | 0.100 | 0.137 | 0.178 | ||
E | 0.020 | 0.057 | 0.099 | 0.139 | 0.181 | E | 0.020 | 0.058 | 0.102 | 0.142 | 0.180 | ||
Squared chi | A | 0.019 | 0.060 | 0.100 | 0.141 | 0.181 | Wave hedges | A | 0.021 | 0.058 | 0.099 | 0.141 | 0.180 |
B | 0.020 | 0.061 | 0.102 | 0.141 | 0.180 | B | 0.020 | 0.060 | 0.095 | 0.141 | 0.181 | ||
C | 0.013 | 0.055 | 0.099 | 0.137 | 0.179 | C | 0.019 | 0.059 | 0.101 | 0.137 | 0.181 | ||
D | 0.027 | 0.066 | 0.103 | 0.139 | 0.179 | D | 0.020 | 0.063 | 0.104 | 0.142 | 0.178 | ||
E | 0.020 | 0.059 | 0.097 | 0.143 | 0.181 | E | 0.020 | 0.061 | 0.100 | 0.139 | 0.180 | ||
Prob. symmetric | A | 0.019 | 0.060 | 0.100 | 0.141 | 0.181 | Czekanowski | A | 0.020 | 0.063 | 0.101 | 0.140 | 0.181 |
B | 0.020 | 0.061 | 0.102 | 0.141 | 0.180 | B | 0.022 | 0.064 | 0.108 | 0.144 | 0.180 | ||
C | 0.013 | 0.055 | 0.099 | 0.137 | 0.179 | C | 0.019 | 0.058 | 0.095 | 0.134 | 0.175 | ||
D | 0.027 | 0.066 | 0.103 | 0.139 | 0.179 | D | 0.019 | 0.059 | 0.098 | 0.141 | 0.181 | ||
E | 0.020 | 0.059 | 0.097 | 0.143 | 0.181 | E | 0.021 | 0.057 | 0.097 | 0.140 | 0.182 | ||
Divergence | A | 0.019 | 0.059 | 0.101 | 0.141 | 0.181 | Motyka | A | 0.020 | 0.063 | 0.101 | 0.140 | 0.181 |
B | 0.021 | 0.057 | 0.097 | 0.137 | 0.178 | B | 0.022 | 0.064 | 0.108 | 0.144 | 0.180 | ||
C | 0.023 | 0.065 | 0.105 | 0.145 | 0.183 | C | 0.019 | 0.058 | 0.095 | 0.134 | 0.175 | ||
D | 0.019 | 0.057 | 0.099 | 0.135 | 0.176 | D | 0.019 | 0.059 | 0.098 | 0.141 | 0.181 | ||
E | 0.019 | 0.061 | 0.098 | 0.142 | 0.182 | E | 0.021 | 0.057 | 0.097 | 0.140 | 0.182 | ||
Clark | A | 0.019 | 0.059 | 0.101 | 0.141 | 0.181 | Inner product | A | 0.021 | 0.059 | 0.100 | 0.143 | 0.183 |
B | 0.021 | 0.057 | 0.097 | 0.137 | 0.178 | B | 0.020 | 0.060 | 0.098 | 0.137 | 0.180 | ||
C | 0.023 | 0.065 | 0.105 | 0.145 | 0.183 | C | 0.018 | 0.061 | 0.100 | 0.139 | 0.179 | ||
D | 0.019 | 0.057 | 0.099 | 0.135 | 0.176 | D | 0.022 | 0.059 | 0.102 | 0.137 | 0.179 | ||
E | 0.019 | 0.061 | 0.098 | 0.142 | 0.182 | E | 0.020 | 0.061 | 0.100 | 0.145 | 0.179 | ||
L2 norm | A | 0.017 | 0.059 | 0.099 | 0.140 | 0.179 | Harmonic mean | A | 0.019 | 0.059 | 0.100 | 0.140 | 0.181 |
B | 0.020 | 0.062 | 0.102 | 0.140 | 0.181 | B | 0.020 | 0.059 | 0.098 | 0.139 | 0.180 | ||
C | 0.022 | 0.062 | 0.100 | 0.139 | 0.181 | C | 0.021 | 0.063 | 0.101 | 0.145 | 0.187 | ||
D | 0.021 | 0.060 | 0.098 | 0.141 | 0.178 | D | 0.021 | 0.061 | 0.097 | 0.134 | 0.173 | ||
E | 0.020 | 0.057 | 0.101 | 0.139 | 0.181 | E | 0.019 | 0.056 | 0.103 | 0.141 | 0.180 | ||
Manhattan | A | 0.019 | 0.058 | 0.097 | 0.136 | 0.177 | Cosine | A | 0.020 | 0.059 | 0.100 | 0.143 | 0.183 |
B | 0.019 | 0.062 | 0.100 | 0.140 | 0.182 | B | 0.020 | 0.060 | 0.098 | 0.137 | 0.180 | ||
C | 0.020 | 0.063 | 0.103 | 0.143 | 0.183 | C | 0.018 | 0.061 | 0.100 | 0.139 | 0.179 | ||
D | 0.023 | 0.059 | 0.099 | 0.139 | 0.178 | D | 0.021 | 0.059 | 0.102 | 0.137 | 0.179 | ||
E | 0.019 | 0.058 | 0.100 | 0.141 | 0.181 | E | 0.020 | 0.061 | 0.100 | 0.145 | 0.179 | ||
Chebyshev | A | 0.026 | 0.071 | 0.108 | 0.149 | 0.186 | Kumar–Hassebrook | A | 0.020 | 0.059 | 0.100 | 0.143 | 0.183 |
B | 0.020 | 0.059 | 0.102 | 0.140 | 0.178 | B | 0.020 | 0.060 | 0.098 | 0.137 | 0.180 | ||
C | 0.017 | 0.053 | 0.091 | 0.132 | 0.176 | C | 0.018 | 0.061 | 0.100 | 0.139 | 0.179 | ||
D | 0.020 | 0.058 | 0.099 | 0.141 | 0.179 | D | 0.021 | 0.059 | 0.102 | 0.137 | 0.179 | ||
E | 0.018 | 0.059 | 0.099 | 0.138 | 0.181 | E | 0.020 | 0.061 | 0.100 | 0.145 | 0.179 | ||
Sorensen | A | 0.020 | 0.063 | 0.101 | 0.140 | 0.181 | Dice | A | 0.017 | 0.057 | 0.100 | 0.141 | 0.180 |
B | 0.022 | 0.064 | 0.108 | 0.144 | 0.180 | B | 0.020 | 0.063 | 0.102 | 0.140 | 0.180 | ||
C | 0.019 | 0.058 | 0.095 | 0.134 | 0.175 | C | 0.021 | 0.061 | 0.100 | 0.139 | 0.182 | ||
D | 0.019 | 0.059 | 0.098 | 0.141 | 0.181 | D | 0.021 | 0.063 | 0.098 | 0.141 | 0.179 | ||
E | 0.021 | 0.057 | 0.097 | 0.140 | 0.182 | E | 0.021 | 0.055 | 0.100 | 0.139 | 0.180 | ||
Gower | A | 0.019 | 0.058 | 0.097 | 0.136 | 0.177 | Wasserstein | A | 0.024 | 0.060 | 0.095 | 0.138 | 0.197 |
B | 0.019 | 0.062 | 0.100 | 0.140 | 0.182 | B | 0.024 | 0.071 | 0.103 | 0.136 | 0.176 | ||
C | 0.020 | 0.063 | 0.103 | 0.143 | 0.183 | C | 0.009 | 0.040 | 0.090 | 0.139 | 0.180 | ||
D | 0.023 | 0.059 | 0.099 | 0.139 | 0.178 | D | 0.031 | 0.072 | 0.109 | 0.146 | 0.175 | ||
E | 0.019 | 0.058 | 0.100 | 0.141 | 0.181 | E | 0.012 | 0.057 | 0.103 | 0.140 | 0.171 | ||
Kulczynski‘s D | A | 0.018 | 0.056 | 0.109 | 0.154 | 0.193 | Kolmogorov–Smirnov | A | 0.026 | 0.067 | 0.119 | 0.160 | 0.185 |
B | 0.027 | 0.065 | 0.105 | 0.156 | 0.188 | B | 0.016 | 0.049 | 0.095 | 0.133 | 0.182 | ||
C | 0.016 | 0.069 | 0.115 | 0.141 | 0.187 | C | 0.008 | 0.044 | 0.085 | 0.134 | 0.175 | ||
D | 0.015 | 0.052 | 0.090 | 0.135 | 0.188 | D | 0.038 | 0.076 | 0.096 | 0.135 | 0.172 | ||
E | 0.024 | 0.057 | 0.081 | 0.113 | 0.144 | E | 0.010 | 0.063 | 0.101 | 0.136 | 0.186 | ||
Canberra | A | 0.018 | 0.059 | 0.098 | 0.141 | 0.181 | Runs | A | 0.019 | 0.051 | 0.091 | 0.137 | 0.177 |
B | 0.022 | 0.063 | 0.100 | 0.139 | 0.178 | B | 0.022 | 0.060 | 0.101 | 0.139 | 0.178 | ||
C | 0.014 | 0.053 | 0.100 | 0.138 | 0.179 | C | 0.021 | 0.058 | 0.104 | 0.139 | 0.184 | ||
D | 0.025 | 0.067 | 0.104 | 0.140 | 0.180 | D | 0.014 | 0.049 | 0.089 | 0.128 | 0.176 | ||
E | 0.020 | 0.058 | 0.098 | 0.142 | 0.182 | E | 0.023 | 0.061 | 0.103 | 0.144 | 0.183 |
Distance Measure | SignIf. | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | Distance Measure | SignIf. | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Squared Euclidean | A | 0.017 | 0.040 | 0.167 | 0.167 | 0.167 | Lorentzian | A | 0.048 | 0.083 | 0.167 | 0.167 | 0.167 |
B | 0.040 | 0.108 | 0.167 | 0.167 | 0.167 | B | 0.039 | 0.105 | 0.167 | 0.167 | 0.167 | ||
C | 0.043 | 0.152 | 0.167 | 0.167 | 0.167 | C | 0.013 | 0.112 | 0.167 | 0.167 | 0.167 | ||
D | 0.000 | 0.000 | 0.000 | 0.092 | 0.122 | D | 0.000 | 0.000 | 0.000 | 0.099 | 0.127 | ||
E | 0.000 | 0.000 | 0.000 | 0.062 | 0.132 | E | 0.000 | 0.000 | 0.000 | 0.061 | 0.129 | ||
F | 0.000 | 0.000 | 0.000 | 0.046 | 0.146 | F | 0.000 | 0.000 | 0.000 | 0.041 | 0.145 | ||
Pearson | A | 0.021 | 0.070 | 0.106 | 0.132 | 0.153 | Intersection | A | 0.000 | 0.000 | 0.000 | 0.083 | 0.117 |
B | 0.018 | 0.060 | 0.101 | 0.125 | 0.147 | B | 0.000 | 0.000 | 0.000 | 0.062 | 0.129 | ||
C | 0.020 | 0.060 | 0.104 | 0.130 | 0.152 | C | 0.000 | 0.000 | 0.000 | 0.054 | 0.154 | ||
D | 0.012 | 0.036 | 0.063 | 0.102 | 0.151 | D | 0.037 | 0.073 | 0.167 | 0.167 | 0.167 | ||
E | 0.015 | 0.038 | 0.064 | 0.106 | 0.149 | E | 0.039 | 0.102 | 0.167 | 0.167 | 0.167 | ||
F | 0.014 | 0.036 | 0.062 | 0.104 | 0.148 | F | 0.024 | 0.124 | 0.167 | 0.167 | 0.167 | ||
Neyman | A | 0.030 | 0.053 | 0.072 | 0.085 | 0.119 | Nonintersection | A | 0.050 | 0.083 | 0.167 | 0.167 | 0.167 |
B | 0.003 | 0.033 | 0.067 | 0.099 | 0.147 | B | 0.037 | 0.104 | 0.167 | 0.167 | 0.167 | ||
C | 0.000 | 0.004 | 0.035 | 0.109 | 0.164 | C | 0.013 | 0.112 | 0.167 | 0.167 | 0.167 | ||
D | 0.051 | 0.083 | 0.101 | 0.117 | 0.139 | D | 0.000 | 0.000 | 0.000 | 0.093 | 0.129 | ||
E | 0.016 | 0.067 | 0.104 | 0.135 | 0.164 | E | 0.000 | 0.000 | 0.000 | 0.065 | 0.128 | ||
F | 0.000 | 0.060 | 0.121 | 0.155 | 0.167 | F | 0.000 | 0.000 | 0.000 | 0.042 | 0.143 | ||
Squared chi | A | 0.006 | 0.014 | 0.052 | 0.105 | 0.156 | Wave hedges | A | 0.017 | 0.046 | 0.075 | 0.110 | 0.149 |
B | 0.004 | 0.014 | 0.045 | 0.107 | 0.157 | B | 0.015 | 0.037 | 0.064 | 0.103 | 0.145 | ||
C | 0.006 | 0.015 | 0.051 | 0.110 | 0.156 | C | 0.015 | 0.036 | 0.062 | 0.106 | 0.149 | ||
D | 0.022 | 0.071 | 0.109 | 0.121 | 0.143 | D | 0.017 | 0.060 | 0.099 | 0.127 | 0.152 | ||
E | 0.029 | 0.089 | 0.120 | 0.127 | 0.142 | E | 0.018 | 0.063 | 0.101 | 0.127 | 0.152 | ||
F | 0.033 | 0.098 | 0.124 | 0.130 | 0.145 | F | 0.018 | 0.060 | 0.100 | 0.127 | 0.152 | ||
Prob. symmetric | A | 0.006 | 0.014 | 0.052 | 0.105 | 0.156 | Czekanowski | A | 0.066 | 0.096 | 0.167 | 0.167 | 0.167 |
B | 0.004 | 0.014 | 0.045 | 0.107 | 0.157 | B | 0.027 | 0.103 | 0.167 | 0.167 | 0.167 | ||
C | 0.006 | 0.015 | 0.051 | 0.110 | 0.156 | C | 0.007 | 0.101 | 0.167 | 0.167 | 0.167 | ||
D | 0.022 | 0.071 | 0.109 | 0.121 | 0.143 | D | 0.000 | 0.000 | 0.000 | 0.074 | 0.106 | ||
E | 0.029 | 0.089 | 0.120 | 0.127 | 0.142 | E | 0.000 | 0.000 | 0.000 | 0.065 | 0.138 | ||
F | 0.033 | 0.098 | 0.124 | 0.130 | 0.145 | F | 0.000 | 0.000 | 0.000 | 0.062 | 0.156 | ||
Divergence | A | 0.039 | 0.077 | 0.107 | 0.133 | 0.156 | Motyka | A | 0.066 | 0.096 | 0.167 | 0.167 | 0.167 |
B | 0.028 | 0.077 | 0.111 | 0.136 | 0.157 | B | 0.027 | 0.103 | 0.167 | 0.167 | 0.167 | ||
C | 0.014 | 0.068 | 0.107 | 0.134 | 0.155 | C | 0.007 | 0.101 | 0.167 | 0.167 | 0.167 | ||
D | 0.011 | 0.035 | 0.069 | 0.108 | 0.146 | D | 0.000 | 0.000 | 0.000 | 0.074 | 0.106 | ||
E | 0.006 | 0.029 | 0.057 | 0.097 | 0.143 | E | 0.000 | 0.000 | 0.000 | 0.065 | 0.138 | ||
F | 0.001 | 0.014 | 0.050 | 0.092 | 0.143 | F | 0.000 | 0.000 | 0.000 | 0.062 | 0.156 | ||
Clark | A | 0.039 | 0.077 | 0.107 | 0.133 | 0.156 | Inner product | A | 0.000 | 0.000 | 0.000 | 0.103 | 0.124 |
B | 0.028 | 0.077 | 0.111 | 0.136 | 0.157 | B | 0.000 | 0.000 | 0.000 | 0.064 | 0.127 | ||
C | 0.014 | 0.068 | 0.107 | 0.134 | 0.155 | C | 0.000 | 0.000 | 0.000 | 0.033 | 0.148 | ||
D | 0.011 | 0.035 | 0.069 | 0.108 | 0.146 | D | 0.036 | 0.063 | 0.167 | 0.167 | 0.167 | ||
E | 0.006 | 0.029 | 0.057 | 0.097 | 0.143 | E | 0.035 | 0.103 | 0.167 | 0.167 | 0.167 | ||
F | 0.001 | 0.014 | 0.050 | 0.092 | 0.143 | F | 0.029 | 0.134 | 0.167 | 0.167 | 0.167 | ||
L2 norm | A | 0.017 | 0.040 | 0.167 | 0.167 | 0.167 | Harmonic mean | A | 0.011 | 0.062 | 0.115 | 0.153 | 0.161 |
B | 0.040 | 0.108 | 0.167 | 0.167 | 0.167 | B | 0.010 | 0.060 | 0.122 | 0.153 | 0.163 | ||
C | 0.043 | 0.152 | 0.167 | 0.167 | 0.167 | C | 0.010 | 0.057 | 0.117 | 0.151 | 0.161 | ||
D | 0.000 | 0.000 | 0.000 | 0.092 | 0.122 | D | 0.023 | 0.046 | 0.057 | 0.096 | 0.144 | ||
E | 0.000 | 0.000 | 0.000 | 0.062 | 0.132 | E | 0.024 | 0.039 | 0.047 | 0.078 | 0.137 | ||
F | 0.000 | 0.000 | 0.000 | 0.046 | 0.146 | F | 0.021 | 0.036 | 0.043 | 0.069 | 0.134 | ||
Manhattan | A | 0.045 | 0.078 | 0.167 | 0.167 | 0.167 | Cosine | A | 0.000 | 0.000 | 0.000 | 0.112 | 0.134 |
B | 0.041 | 0.105 | 0.167 | 0.167 | 0.167 | B | 0.000 | 0.000 | 0.000 | 0.063 | 0.124 | ||
C | 0.014 | 0.117 | 0.167 | 0.167 | 0.167 | C | 0.000 | 0.000 | 0.000 | 0.025 | 0.141 | ||
D | 0.000 | 0.000 | 0.000 | 0.104 | 0.130 | D | 0.026 | 0.056 | 0.167 | 0.167 | 0.167 | ||
E | 0.000 | 0.000 | 0.000 | 0.060 | 0.128 | E | 0.036 | 0.104 | 0.167 | 0.167 | 0.167 | ||
F | 0.000 | 0.000 | 0.000 | 0.036 | 0.142 | F | 0.037 | 0.139 | 0.167 | 0.167 | 0.167 | ||
Chebyshev | A | 0.016 | 0.040 | 0.166 | 0.167 | 0.167 | Hassebrook | A | 0.000 | 0.000 | 0.000 | 0.111 | 0.134 |
B | 0.031 | 0.102 | 0.167 | 0.167 | 0.167 | B | 0.000 | 0.000 | 0.000 | 0.063 | 0.124 | ||
C | 0.053 | 0.158 | 0.167 | 0.167 | 0.167 | C | 0.000 | 0.000 | 0.000 | 0.026 | 0.141 | ||
D | 0.000 | 0.000 | 0.001 | 0.079 | 0.113 | D | 0.027 | 0.057 | 0.167 | 0.167 | 0.167 | ||
E | 0.000 | 0.000 | 0.000 | 0.068 | 0.136 | E | 0.036 | 0.104 | 0.167 | 0.167 | 0.167 | ||
F | 0.000 | 0.000 | 0.000 | 0.053 | 0.151 | F | 0.037 | 0.139 | 0.167 | 0.167 | 0.167 | ||
Sorensen | A | 0.066 | 0.096 | 0.167 | 0.167 | 0.167 | Dice | A | 0.032 | 0.055 | 0.167 | 0.167 | 0.167 |
B | 0.027 | 0.103 | 0.167 | 0.167 | 0.167 | B | 0.042 | 0.103 | 0.167 | 0.167 | 0.167 | ||
C | 0.007 | 0.101 | 0.167 | 0.167 | 0.167 | C | 0.025 | 0.141 | 0.167 | 0.167 | 0.167 | ||
D | 0.000 | 0.000 | 0.000 | 0.074 | 0.106 | D | 0.000 | 0.000 | 0.000 | 0.110 | 0.140 | ||
E | 0.000 | 0.000 | 0.000 | 0.065 | 0.138 | E | 0.000 | 0.000 | 0.000 | 0.063 | 0.130 | ||
F | 0.000 | 0.000 | 0.000 | 0.062 | 0.156 | F | 0.000 | 0.000 | 0.000 | 0.027 | 0.130 | ||
Gower | A | 0.045 | 0.078 | 0.167 | 0.167 | 0.167 | Wasserstein | A | 0.015 | 0.031 | 0.045 | 0.067 | 0.127 |
B | 0.041 | 0.105 | 0.167 | 0.167 | 0.167 | B | 0.019 | 0.056 | 0.086 | 0.125 | 0.162 | ||
C | 0.014 | 0.117 | 0.167 | 0.167 | 0.167 | C | 0.012 | 0.055 | 0.115 | 0.155 | 0.167 | ||
D | 0.000 | 0.000 | 0.000 | 0.104 | 0.130 | D | 0.021 | 0.038 | 0.056 | 0.072 | 0.111 | ||
E | 0.000 | 0.000 | 0.000 | 0.060 | 0.128 | E | 0.020 | 0.056 | 0.085 | 0.128 | 0.167 | ||
F | 0.000 | 0.000 | 0.000 | 0.036 | 0.142 | F | 0.014 | 0.065 | 0.112 | 0.153 | 0.167 | ||
Kulczynski‘s D | A | 0.000 | 0.000 | 0.000 | 0.110 | 0.144 | Kolmogorov–Smirnov | A | 0.017 | 0.041 | 0.050 | 0.070 | 0.120 |
B | 0.000 | 0.000 | 0.000 | 0.057 | 0.160 | B | 0.019 | 0.051 | 0.074 | 0.119 | 0.162 | ||
C | 0.000 | 0.000 | 0.000 | 0.033 | 0.096 | C | 0.007 | 0.060 | 0.118 | 0.157 | 0.167 | ||
D | 0.064 | 0.167 | 0.167 | 0.167 | 0.167 | D | 0.018 | 0.038 | 0.048 | 0.070 | 0.115 | ||
E | 0.026 | 0.093 | 0.167 | 0.167 | 0.167 | E | 0.020 | 0.050 | 0.070 | 0.124 | 0.166 | ||
F | 0.009 | 0.040 | 0.167 | 0.167 | 0.167 | F | 0.010 | 0.060 | 0.105 | 0.155 | 0.167 | ||
Canberra | A | 0.010 | 0.022 | 0.058 | 0.107 | 0.154 | Runs | A | 0.001 | 0.006 | 0.022 | 0.049 | 0.117 |
B | 0.007 | 0.021 | 0.053 | 0.109 | 0.154 | B | 0.003 | 0.027 | 0.074 | 0.128 | 0.163 | ||
C | 0.009 | 0.025 | 0.057 | 0.110 | 0.154 | C | 0.023 | 0.102 | 0.152 | 0.166 | 0.167 | ||
D | 0.021 | 0.064 | 0.102 | 0.122 | 0.147 | D | 0.002 | 0.009 | 0.028 | 0.053 | 0.108 | ||
E | 0.024 | 0.079 | 0.113 | 0.125 | 0.144 | E | 0.004 | 0.026 | 0.073 | 0.122 | 0.163 | ||
F | 0.029 | 0.088 | 0.117 | 0.128 | 0.147 | F | 0.022 | 0.099 | 0.150 | 0.166 | 0.167 |
Distance Measure | SignIf. | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | Distance Measure | SignIf. | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Squared Euclidean | A | 0.026 | 0.062 | 0.098 | 0.136 | 0.175 | Lorentzian | A | 0.023 | 0.061 | 0.097 | 0.137 | 0.177 |
B | 0.028 | 0.063 | 0.096 | 0.132 | 0.172 | B | 0.025 | 0.064 | 0.100 | 0.136 | 0.175 | ||
C | 0.021 | 0.060 | 0.100 | 0.137 | 0.179 | C | 0.021 | 0.065 | 0.109 | 0.145 | 0.180 | ||
D | 0.016 | 0.057 | 0.099 | 0.140 | 0.181 | D | 0.022 | 0.066 | 0.107 | 0.142 | 0.181 | ||
E | 0.010 | 0.057 | 0.107 | 0.156 | 0.193 | E | 0.010 | 0.045 | 0.087 | 0.139 | 0.187 | ||
Pearson | A | 0.022 | 0.069 | 0.109 | 0.144 | 0.177 | Intersection | A | 0.019 | 0.060 | 0.100 | 0.142 | 0.183 |
B | 0.017 | 0.051 | 0.088 | 0.137 | 0.182 | B | 0.024 | 0.061 | 0.101 | 0.137 | 0.178 | ||
C | 0.021 | 0.059 | 0.095 | 0.133 | 0.181 | C | 0.019 | 0.055 | 0.096 | 0.137 | 0.177 | ||
D | 0.021 | 0.059 | 0.099 | 0.137 | 0.177 | D | 0.022 | 0.063 | 0.100 | 0.139 | 0.176 | ||
E | 0.019 | 0.062 | 0.108 | 0.149 | 0.182 | E | 0.016 | 0.061 | 0.103 | 0.145 | 0.186 | ||
Neyman | A | 0.019 | 0.059 | 0.101 | 0.143 | 0.183 | Nonintersection | A | 0.017 | 0.058 | 0.100 | 0.140 | 0.181 |
B | 0.021 | 0.060 | 0.100 | 0.145 | 0.181 | B | 0.022 | 0.063 | 0.099 | 0.139 | 0.176 | ||
C | 0.022 | 0.063 | 0.101 | 0.142 | 0.180 | C | 0.023 | 0.063 | 0.104 | 0.145 | 0.181 | ||
D | 0.022 | 0.060 | 0.101 | 0.142 | 0.180 | D | 0.024 | 0.061 | 0.100 | 0.137 | 0.178 | ||
E | 0.016 | 0.059 | 0.096 | 0.129 | 0.176 | E | 0.014 | 0.055 | 0.097 | 0.139 | 0.184 | ||
Squared chi | A | 0.020 | 0.059 | 0.101 | 0.142 | 0.182 | Wave hedges | A | 0.024 | 0.063 | 0.105 | 0.141 | 0.183 |
B | 0.021 | 0.066 | 0.105 | 0.141 | 0.180 | B | 0.018 | 0.056 | 0.095 | 0.137 | 0.181 | ||
C | 0.018 | 0.055 | 0.103 | 0.144 | 0.181 | C | 0.021 | 0.062 | 0.104 | 0.148 | 0.182 | ||
D | 0.017 | 0.057 | 0.098 | 0.138 | 0.180 | D | 0.019 | 0.057 | 0.095 | 0.137 | 0.180 | ||
E | 0.024 | 0.063 | 0.093 | 0.135 | 0.178 | E | 0.018 | 0.061 | 0.102 | 0.137 | 0.174 | ||
Prob. symmetric | A | 0.020 | 0.059 | 0.101 | 0.142 | 0.182 | Czekanowski | A | 0.030 | 0.078 | 0.100 | 0.124 | 0.174 |
B | 0.021 | 0.066 | 0.105 | 0.141 | 0.180 | B | 0.022 | 0.074 | 0.105 | 0.138 | 0.178 | ||
C | 0.018 | 0.055 | 0.103 | 0.144 | 0.181 | C | 0.021 | 0.058 | 0.096 | 0.130 | 0.178 | ||
D | 0.017 | 0.057 | 0.098 | 0.138 | 0.180 | D | 0.015 | 0.051 | 0.100 | 0.146 | 0.182 | ||
E | 0.024 | 0.063 | 0.093 | 0.135 | 0.178 | E | 0.012 | 0.038 | 0.099 | 0.161 | 0.187 | ||
Divergence | A | 0.024 | 0.063 | 0.102 | 0.146 | 0.180 | Motyka | A | 0.030 | 0.078 | 0.100 | 0.124 | 0.174 |
B | 0.018 | 0.053 | 0.093 | 0.137 | 0.181 | B | 0.022 | 0.074 | 0.105 | 0.138 | 0.178 | ||
C | 0.022 | 0.066 | 0.109 | 0.145 | 0.180 | C | 0.021 | 0.058 | 0.096 | 0.130 | 0.178 | ||
D | 0.019 | 0.060 | 0.099 | 0.141 | 0.182 | D | 0.015 | 0.051 | 0.100 | 0.146 | 0.182 | ||
E | 0.018 | 0.059 | 0.096 | 0.132 | 0.177 | E | 0.012 | 0.038 | 0.099 | 0.161 | 0.187 | ||
Clark | A | 0.024 | 0.063 | 0.102 | 0.146 | 0.180 | Inner product | A | 0.025 | 0.063 | 0.099 | 0.140 | 0.174 |
B | 0.018 | 0.053 | 0.093 | 0.137 | 0.181 | B | 0.026 | 0.065 | 0.103 | 0.135 | 0.172 | ||
C | 0.022 | 0.066 | 0.109 | 0.145 | 0.180 | C | 0.022 | 0.061 | 0.099 | 0.137 | 0.178 | ||
D | 0.019 | 0.060 | 0.099 | 0.141 | 0.182 | D | 0.017 | 0.058 | 0.101 | 0.143 | 0.185 | ||
E | 0.018 | 0.059 | 0.096 | 0.132 | 0.177 | E | 0.010 | 0.052 | 0.099 | 0.145 | 0.190 | ||
L2 norm | A | 0.026 | 0.062 | 0.098 | 0.136 | 0.175 | Harmonic mean | A | 0.018 | 0.058 | 0.098 | 0.141 | 0.180 |
B | 0.028 | 0.063 | 0.096 | 0.132 | 0.172 | B | 0.020 | 0.059 | 0.095 | 0.135 | 0.179 | ||
C | 0.021 | 0.060 | 0.100 | 0.137 | 0.179 | C | 0.019 | 0.056 | 0.098 | 0.145 | 0.182 | ||
D | 0.016 | 0.057 | 0.099 | 0.140 | 0.181 | D | 0.020 | 0.062 | 0.102 | 0.143 | 0.183 | ||
E | 0.010 | 0.057 | 0.107 | 0.156 | 0.193 | E | 0.022 | 0.065 | 0.107 | 0.137 | 0.176 | ||
Manhattan | A | 0.024 | 0.059 | 0.097 | 0.136 | 0.176 | Cosine | A | 0.025 | 0.064 | 0.099 | 0.140 | 0.174 |
B | 0.025 | 0.065 | 0.098 | 0.133 | 0.173 | B | 0.026 | 0.065 | 0.103 | 0.135 | 0.172 | ||
C | 0.021 | 0.065 | 0.107 | 0.141 | 0.180 | C | 0.022 | 0.061 | 0.099 | 0.136 | 0.179 | ||
D | 0.021 | 0.066 | 0.105 | 0.143 | 0.182 | D | 0.017 | 0.058 | 0.101 | 0.143 | 0.184 | ||
E | 0.009 | 0.044 | 0.094 | 0.148 | 0.189 | E | 0.010 | 0.052 | 0.099 | 0.146 | 0.190 | ||
Chebyshev | A | 0.017 | 0.058 | 0.102 | 0.146 | 0.186 | Kumar–Hassebrook | A | 0.025 | 0.064 | 0.099 | 0.140 | 0.174 |
B | 0.020 | 0.060 | 0.097 | 0.138 | 0.181 | B | 0.026 | 0.065 | 0.103 | 0.135 | 0.172 | ||
C | 0.017 | 0.054 | 0.094 | 0.132 | 0.176 | C | 0.022 | 0.061 | 0.099 | 0.136 | 0.179 | ||
D | 0.016 | 0.050 | 0.089 | 0.129 | 0.170 | D | 0.017 | 0.058 | 0.101 | 0.143 | 0.184 | ||
E | 0.029 | 0.079 | 0.119 | 0.156 | 0.187 | E | 0.010 | 0.052 | 0.099 | 0.146 | 0.190 | ||
Sorensen | A | 0.030 | 0.078 | 0.100 | 0.124 | 0.174 | Dice | A | 0.026 | 0.060 | 0.101 | 0.136 | 0.175 |
B | 0.022 | 0.074 | 0.105 | 0.138 | 0.178 | B | 0.028 | 0.065 | 0.097 | 0.135 | 0.174 | ||
C | 0.021 | 0.058 | 0.096 | 0.130 | 0.178 | C | 0.021 | 0.064 | 0.101 | 0.139 | 0.178 | ||
D | 0.015 | 0.051 | 0.100 | 0.146 | 0.182 | D | 0.016 | 0.057 | 0.099 | 0.142 | 0.183 | ||
E | 0.012 | 0.038 | 0.099 | 0.161 | 0.187 | E | 0.010 | 0.054 | 0.101 | 0.148 | 0.190 | ||
Gower | A | 0.024 | 0.059 | 0.097 | 0.136 | 0.176 | Wasserstein | A | 0.062 | 0.136 | 0.178 | 0.193 | 0.200 |
B | 0.025 | 0.065 | 0.098 | 0.133 | 0.173 | B | 0.016 | 0.065 | 0.120 | 0.172 | 0.200 | ||
C | 0.021 | 0.065 | 0.107 | 0.141 | 0.180 | C | 0.010 | 0.055 | 0.116 | 0.184 | 0.200 | ||
D | 0.021 | 0.066 | 0.105 | 0.143 | 0.182 | D | 0.010 | 0.037 | 0.071 | 0.116 | 0.196 | ||
E | 0.009 | 0.044 | 0.094 | 0.148 | 0.189 | E | 0.003 | 0.008 | 0.015 | 0.034 | 0.104 | ||
Kulczynski‘s D | A | 0.018 | 0.074 | 0.145 | 0.200 | 0.200 | Kolmogorov–Smirnov | A | 0.050 | 0.114 | 0.159 | 0.199 | 0.200 |
B | 0.007 | 0.059 | 0.111 | 0.169 | 0.200 | B | 0.015 | 0.063 | 0.102 | 0.156 | 0.198 | ||
C | 0.023 | 0.083 | 0.136 | 0.193 | 0.200 | C | 0.018 | 0.071 | 0.133 | 0.186 | 0.200 | ||
D | 0.052 | 0.084 | 0.108 | 0.139 | 0.200 | D | 0.014 | 0.043 | 0.081 | 0.123 | 0.196 | ||
E | 0.000 | 0.000 | 0.000 | 0.000 | 0.100 | E | 0.003 | 0.009 | 0.019 | 0.035 | 0.105 | ||
Canberra | A | 0.019 | 0.058 | 0.098 | 0.141 | 0.180 | Runs | A | 0.026 | 0.067 | 0.105 | 0.147 | 0.181 |
B | 0.021 | 0.064 | 0.105 | 0.141 | 0.180 | B | 0.016 | 0.056 | 0.088 | 0.137 | 0.186 | ||
C | 0.018 | 0.060 | 0.101 | 0.143 | 0.180 | C | 0.022 | 0.065 | 0.103 | 0.155 | 0.191 | ||
D | 0.018 | 0.057 | 0.099 | 0.139 | 0.180 | D | 0.019 | 0.060 | 0.098 | 0.150 | 0.185 | ||
E | 0.024 | 0.061 | 0.097 | 0.137 | 0.179 | E | 0.012 | 0.038 | 0.064 | 0.101 | 0.142 |
Country Code | Country Name | Country Code | Country Name |
---|---|---|---|
AT | Austria | IE | Ireland |
BA | Bosnia Herzegovina | IS | Iceland |
BE | Belgium | IT | Italy |
BG | Bulgaria | LT | Lithuania |
CH | Switzerland | LU | Luxembourg |
CS | Serbia and Montenegro | LV | Latvia |
CY | Cyprus | ME | Montenegro |
CZ | Czech Republic | MK | North Macedonia |
DE | Germany | NI | Northern Ireland |
DK | Denmark | NL | Netherlands |
DKW | Denmark West | NO | Norway |
EE | Estonia | PL | Poland |
ES | Spain | PT | Portugal |
FR | France | RO | Romania |
GB | Great Britain | RS | Serbia |
GR | Greece | SE | Sweden |
HR | Croatia | SI | Slovenia |
HU | Hungary | SK | Slovakia |
Country Code | Squared Euclidean | Pearson | Neyman | Squared Chi | Prob. Symmetric | Divergence | Clark |
---|---|---|---|---|---|---|---|
AT | 0.00268 | 0.00253 | 0.00201 | 0.00262 | 0.00262 | 0.00227 | 0.00227 |
BA | 0.00280 | 0.00287 | 0.00243 | 0.00260 | 0.00260 | 0.00257 | 0.00257 |
BE | 0.00315 | 0.00332 | 0.00232 | 0.00285 | 0.00285 | 0.00263 | 0.00263 |
BG | 0.00329 | 0.00300 | 0.00244 | 0.00281 | 0.00281 | 0.00281 | 0.00281 |
CH | 0.00242 | 0.00227 | 0.00212 | 0.00266 | 0.00266 | 0.00220 | 0.00220 |
CS | 0.00171 | 0.00291 | 0.00367 | 0.00250 | 0.00250 | 0.00218 | 0.00218 |
CY | 0.00171 | 0.00299 | 0.00351 | 0.00224 | 0.00224 | 0.00199 | 0.00199 |
CZ | 0.00336 | 0.00264 | 0.00177 | 0.00296 | 0.00296 | 0.00277 | 0.00277 |
DE | 0.00227 | 0.00276 | 0.00281 | 0.00247 | 0.00247 | 0.00303 | 0.00303 |
DK | 0.00282 | 0.00218 | 0.00309 | 0.00280 | 0.00280 | 0.00283 | 0.00283 |
DKW | 0.00273 | 0.00235 | 0.00213 | 0.00267 | 0.00267 | 0.00248 | 0.00248 |
EE | 0.00423 | 0.00180 | 0.00299 | 0.00296 | 0.00296 | 0.00311 | 0.00311 |
ES | 0.00384 | 0.00266 | 0.00173 | 0.00306 | 0.00306 | 0.00287 | 0.00287 |
FR | 0.00244 | 0.00239 | 0.00185 | 0.00260 | 0.00260 | 0.00226 | 0.00226 |
GB | 0.00393 | 0.00300 | 0.00213 | 0.00310 | 0.00310 | 0.00258 | 0.00258 |
GR | 0.00139 | 0.00325 | 0.00329 | 0.00223 | 0.00223 | 0.00226 | 0.00226 |
HR | 0.00372 | 0.00299 | 0.00226 | 0.00299 | 0.00299 | 0.00261 | 0.00261 |
HU | 0.00298 | 0.00293 | 0.00393 | 0.00244 | 0.00244 | 0.00415 | 0.00415 |
IE | 0.00281 | 0.00299 | 0.00354 | 0.00250 | 0.00250 | 0.00395 | 0.00395 |
IS | 0.00405 | 0.00229 | 0.00161 | 0.00318 | 0.00318 | 0.00269 | 0.00269 |
IT | 0.00328 | 0.00269 | 0.00185 | 0.00295 | 0.00295 | 0.00280 | 0.00280 |
LT | 0.00243 | 0.00257 | 0.00247 | 0.00260 | 0.00260 | 0.00216 | 0.00216 |
LU | 0.00219 | 0.00321 | 0.00391 | 0.00233 | 0.00233 | 0.00256 | 0.00256 |
LV | 0.00250 | 0.00222 | 0.00181 | 0.00269 | 0.00269 | 0.00220 | 0.00220 |
ME | 0.00263 | 0.00239 | 0.00160 | 0.00276 | 0.00276 | 0.00235 | 0.00235 |
MK | 0.00194 | 0.00232 | 0.00231 | 0.00260 | 0.00260 | 0.00204 | 0.00204 |
NI | 0.00255 | 0.00287 | 0.00394 | 0.00238 | 0.00238 | 0.00366 | 0.00366 |
NL | 0.00245 | 0.00290 | 0.00319 | 0.00247 | 0.00247 | 0.00253 | 0.00253 |
NO | 0.00252 | 0.00227 | 0.00222 | 0.00271 | 0.00271 | 0.00216 | 0.00216 |
PL | 0.00261 | 0.00240 | 0.00247 | 0.00264 | 0.00264 | 0.00225 | 0.00225 |
PT | 0.00218 | 0.00264 | 0.00320 | 0.00256 | 0.00256 | 0.00309 | 0.00309 |
RO | 0.00211 | 0.00295 | 0.00352 | 0.00247 | 0.00247 | 0.00337 | 0.00337 |
RS | 0.00125 | 0.00340 | 0.00377 | 0.00207 | 0.00207 | 0.00248 | 0.00248 |
SE | 0.00269 | 0.00275 | 0.00423 | 0.00248 | 0.00248 | 0.00346 | 0.00346 |
SI | 0.00239 | 0.00239 | 0.00243 | 0.00252 | 0.00252 | 0.00226 | 0.00226 |
SK | 0.00244 | 0.00206 | 0.00173 | 0.00263 | 0.00263 | 0.00204 | 0.00204 |
Country code | L2 norm | Manhattan | Chebyshev | Sorensen | Gower | Kulczynski‘s D | Canberra |
AT | 0.00268 | 0.00299 | 0.00251 | 0.00259 | 0.00299 | 0.00288 | 0.00257 |
BA | 0.00280 | 0.00319 | 0.00270 | 0.00282 | 0.00319 | 0.00000 | 0.00252 |
BE | 0.00315 | 0.00345 | 0.00279 | 0.00288 | 0.00345 | 0.00197 | 0.00272 |
BG | 0.00329 | 0.00351 | 0.00249 | 0.00257 | 0.00351 | 0.00460 | 0.00274 |
CH | 0.00242 | 0.00259 | 0.00212 | 0.00243 | 0.00259 | 0.00053 | 0.00265 |
CS | 0.00171 | 0.00185 | 0.00097 | 0.00160 | 0.00185 | 0.00529 | 0.00251 |
CY | 0.00171 | 0.00185 | 0.00114 | 0.00146 | 0.00185 | 0.00618 | 0.00232 |
CZ | 0.00336 | 0.00337 | 0.00364 | 0.00332 | 0.00337 | 0.00175 | 0.00291 |
DE | 0.00227 | 0.00221 | 0.00221 | 0.00256 | 0.00221 | 0.00243 | 0.00255 |
DK | 0.00282 | 0.00236 | 0.00401 | 0.00324 | 0.00236 | 0.00123 | 0.00279 |
DKW | 0.00273 | 0.00267 | 0.00342 | 0.00269 | 0.00267 | 0.00153 | 0.00270 |
EE | 0.00423 | 0.00359 | 0.00598 | 0.00476 | 0.00359 | 0.00190 | 0.00295 |
ES | 0.00384 | 0.00375 | 0.00413 | 0.00394 | 0.00375 | 0.00074 | 0.00297 |
FR | 0.00244 | 0.00277 | 0.00245 | 0.00231 | 0.00277 | 0.00003 | 0.00260 |
GB | 0.00393 | 0.00397 | 0.00364 | 0.00378 | 0.00397 | 0.00094 | 0.00295 |
GR | 0.00139 | 0.00145 | 0.00067 | 0.00191 | 0.00145 | 0.00125 | 0.00230 |
HR | 0.00372 | 0.00373 | 0.00315 | 0.00340 | 0.00373 | 0.00224 | 0.00289 |
HU | 0.00298 | 0.00236 | 0.00436 | 0.00246 | 0.00236 | 0.00402 | 0.00248 |
IE | 0.00281 | 0.00223 | 0.00393 | 0.00261 | 0.00223 | 0.00467 | 0.00251 |
IS | 0.00405 | 0.00397 | 0.00382 | 0.00399 | 0.00397 | 0.00023 | 0.00309 |
IT | 0.00328 | 0.00364 | 0.00309 | 0.00328 | 0.00364 | 0.00000 | 0.00285 |
LT | 0.00243 | 0.00265 | 0.00189 | 0.00215 | 0.00265 | 0.00251 | 0.00258 |
LU | 0.00219 | 0.00232 | 0.00085 | 0.00127 | 0.00232 | 0.00631 | 0.00236 |
LV | 0.00250 | 0.00267 | 0.00291 | 0.00259 | 0.00267 | 0.00067 | 0.00271 |
ME | 0.00263 | 0.00285 | 0.00273 | 0.00281 | 0.00285 | 0.00090 | 0.00274 |
MK | 0.00194 | 0.00202 | 0.00171 | 0.00233 | 0.00202 | 0.00229 | 0.00265 |
NI | 0.00255 | 0.00187 | 0.00393 | 0.00303 | 0.00187 | 0.00602 | 0.00247 |
NL | 0.00245 | 0.00266 | 0.00143 | 0.00170 | 0.00266 | 0.00529 | 0.00247 |
NO | 0.00252 | 0.00258 | 0.00181 | 0.00241 | 0.00258 | 0.00056 | 0.00272 |
PL | 0.00261 | 0.00268 | 0.00217 | 0.00233 | 0.00268 | 0.00347 | 0.00265 |
PT | 0.00218 | 0.00190 | 0.00192 | 0.00258 | 0.00190 | 0.00489 | 0.00262 |
RO | 0.00211 | 0.00176 | 0.00293 | 0.00243 | 0.00176 | 0.00546 | 0.00251 |
RS | 0.00125 | 0.00150 | 0.00048 | 0.00166 | 0.00150 | 0.00431 | 0.00220 |
SE | 0.00269 | 0.00193 | 0.00415 | 0.00358 | 0.00193 | 0.00528 | 0.00249 |
SI | 0.00239 | 0.00264 | 0.00176 | 0.00221 | 0.00264 | 0.00355 | 0.00252 |
SK | 0.00244 | 0.00273 | 0.00232 | 0.00236 | 0.00273 | 0.00034 | 0.00259 |
Country Code | Lorentzian | Intersection | Nonintersection | Wave Hedges | Czekanowski | Motyka | Inner Product |
---|---|---|---|---|---|---|---|
AT | 0.00318 | 0.00258 | 0.00311 | 0.00231 | 0.00259 | 0.00259 | 0.00245 |
BA | 0.00345 | 0.00307 | 0.00329 | 0.00239 | 0.00282 | 0.00282 | 0.00290 |
BE | 0.00367 | 0.00392 | 0.00346 | 0.00298 | 0.00288 | 0.00288 | 0.00309 |
BG | 0.00361 | 0.00391 | 0.00356 | 0.00296 | 0.00257 | 0.00257 | 0.00309 |
CH | 0.00267 | 0.00197 | 0.00264 | 0.00231 | 0.00243 | 0.00243 | 0.00218 |
CS | 0.00194 | 0.00160 | 0.00186 | 0.00298 | 0.00160 | 0.00160 | 0.00105 |
CY | 0.00190 | 0.00093 | 0.00177 | 0.00264 | 0.00146 | 0.00146 | 0.00066 |
CZ | 0.00337 | 0.00444 | 0.00336 | 0.00280 | 0.00332 | 0.00332 | 0.00399 |
DE | 0.00219 | 0.00248 | 0.00221 | 0.00244 | 0.00256 | 0.00256 | 0.00280 |
DK | 0.00212 | 0.00166 | 0.00233 | 0.00244 | 0.00324 | 0.00324 | 0.00254 |
DKW | 0.00263 | 0.00221 | 0.00275 | 0.00275 | 0.00269 | 0.00269 | 0.00271 |
EE | 0.00317 | 0.00372 | 0.00356 | 0.00225 | 0.00476 | 0.00476 | 0.00400 |
ES | 0.00368 | 0.00511 | 0.00375 | 0.00263 | 0.00394 | 0.00394 | 0.00435 |
FR | 0.00295 | 0.00245 | 0.00285 | 0.00239 | 0.00231 | 0.00231 | 0.00227 |
GB | 0.00405 | 0.00476 | 0.00394 | 0.00305 | 0.00378 | 0.00378 | 0.00331 |
GR | 0.00148 | 0.00094 | 0.00134 | 0.00296 | 0.00191 | 0.00191 | 0.00071 |
HR | 0.00379 | 0.00431 | 0.00374 | 0.00290 | 0.00340 | 0.00340 | 0.00316 |
HU | 0.00196 | 0.00293 | 0.00229 | 0.00292 | 0.00246 | 0.00246 | 0.00407 |
IE | 0.00193 | 0.00347 | 0.00217 | 0.00302 | 0.00261 | 0.00261 | 0.00395 |
IS | 0.00391 | 0.00551 | 0.00394 | 0.00212 | 0.00399 | 0.00399 | 0.00442 |
IT | 0.00382 | 0.00414 | 0.00368 | 0.00242 | 0.00328 | 0.00328 | 0.00327 |
LT | 0.00275 | 0.00197 | 0.00265 | 0.00264 | 0.00215 | 0.00215 | 0.00213 |
LU | 0.00236 | 0.00202 | 0.00237 | 0.00303 | 0.00127 | 0.00127 | 0.00115 |
LV | 0.00273 | 0.00249 | 0.00271 | 0.00259 | 0.00259 | 0.00259 | 0.00261 |
ME | 0.00299 | 0.00285 | 0.00301 | 0.00242 | 0.00281 | 0.00281 | 0.00290 |
MK | 0.00205 | 0.00186 | 0.00193 | 0.00242 | 0.00233 | 0.00233 | 0.00217 |
NI | 0.00152 | 0.00198 | 0.00179 | 0.00300 | 0.00303 | 0.00303 | 0.00326 |
NL | 0.00276 | 0.00272 | 0.00265 | 0.00279 | 0.00170 | 0.00170 | 0.00221 |
NO | 0.00263 | 0.00184 | 0.00262 | 0.00251 | 0.00241 | 0.00241 | 0.00197 |
PL | 0.00270 | 0.00208 | 0.00276 | 0.00256 | 0.00233 | 0.00233 | 0.00219 |
PT | 0.00177 | 0.00187 | 0.00187 | 0.00255 | 0.00258 | 0.00258 | 0.00274 |
RO | 0.00162 | 0.00248 | 0.00168 | 0.00304 | 0.00243 | 0.00243 | 0.00317 |
RS | 0.00163 | 0.00112 | 0.00132 | 0.00278 | 0.00166 | 0.00166 | 0.00062 |
SE | 0.00144 | 0.00162 | 0.00181 | 0.00284 | 0.00358 | 0.00358 | 0.00299 |
SI | 0.00279 | 0.00232 | 0.00263 | 0.00256 | 0.00221 | 0.00221 | 0.00263 |
SK | 0.00295 | 0.00232 | 0.00282 | 0.00229 | 0.00236 | 0.00236 | 0.00245 |
Country code | Harmonic mean | Cosine | Kumar–Hassebrook | Dice | Wasserstein | Kolmogorov–Smirnov | Runs |
AT | 0.00288 | 0.00247 | 0.00247 | 0.00268 | 0.01404 | 0.01413 | 0.01195 |
BA | 0.00293 | 0.00287 | 0.00287 | 0.00278 | 0.01260 | 0.01056 | 0.00441 |
BE | 0.00302 | 0.00306 | 0.00306 | 0.00315 | 0.00417 | 0.00221 | 0.00233 |
BG | 0.00283 | 0.00305 | 0.00305 | 0.00329 | 0.00102 | 0.00018 | 0.00000 |
CH | 0.00281 | 0.00219 | 0.00219 | 0.00242 | 0.00282 | 0.00364 | 0.00707 |
CS | 0.00242 | 0.00103 | 0.00103 | 0.00171 | 0.00005 | 0.00012 | 0.00144 |
CY | 0.00244 | 0.00064 | 0.00064 | 0.00172 | 0.00211 | 0.00286 | 0.00438 |
CZ | 0.00298 | 0.00398 | 0.00398 | 0.00334 | 0.00043 | 0.00021 | 0.00056 |
DE | 0.00269 | 0.00277 | 0.00277 | 0.00225 | 0.00002 | 0.00029 | 0.00107 |
DK | 0.00254 | 0.00254 | 0.00254 | 0.00281 | 0.00000 | 0.00000 | 0.00003 |
DKW | 0.00250 | 0.00273 | 0.00273 | 0.00274 | 0.00000 | 0.00000 | 0.00055 |
EE | 0.00227 | 0.00401 | 0.00401 | 0.00423 | 0.00000 | 0.00000 | 0.00000 |
ES | 0.00280 | 0.00435 | 0.00435 | 0.00382 | 0.00000 | 0.00000 | 0.00004 |
FR | 0.00290 | 0.00227 | 0.00227 | 0.00245 | 0.00814 | 0.00727 | 0.00507 |
GB | 0.00291 | 0.00331 | 0.00331 | 0.00392 | 0.00000 | 0.00000 | 0.00000 |
GR | 0.00242 | 0.00073 | 0.00073 | 0.00142 | 0.00040 | 0.00080 | 0.00000 |
HR | 0.00290 | 0.00314 | 0.00315 | 0.00371 | 0.00003 | 0.00001 | 0.00000 |
HU | 0.00203 | 0.00406 | 0.00406 | 0.00299 | 0.00003 | 0.00002 | 0.00000 |
IE | 0.00220 | 0.00394 | 0.00393 | 0.00281 | 0.00000 | 0.00000 | 0.00000 |
IS | 0.00306 | 0.00443 | 0.00443 | 0.00403 | 0.00000 | 0.00000 | 0.00000 |
IT | 0.00305 | 0.00327 | 0.00327 | 0.00326 | 0.00518 | 0.00388 | 0.00318 |
LT | 0.00260 | 0.00214 | 0.00214 | 0.00244 | 0.00608 | 0.00628 | 0.00696 |
LU | 0.00239 | 0.00108 | 0.00108 | 0.00219 | 0.00007 | 0.00013 | 0.00175 |
LV | 0.00269 | 0.00264 | 0.00264 | 0.00251 | 0.00145 | 0.00109 | 0.00233 |
ME | 0.00308 | 0.00291 | 0.00291 | 0.00262 | 0.00422 | 0.00449 | 0.00353 |
MK | 0.00271 | 0.00220 | 0.00220 | 0.00195 | 0.00163 | 0.00195 | 0.00323 |
NI | 0.00202 | 0.00325 | 0.00325 | 0.00256 | 0.00000 | 0.00000 | 0.00002 |
NL | 0.00265 | 0.00216 | 0.00216 | 0.00245 | 0.00440 | 0.00426 | 0.00575 |
NO | 0.00271 | 0.00198 | 0.00198 | 0.00252 | 0.00219 | 0.00208 | 0.00005 |
PL | 0.00259 | 0.00221 | 0.00221 | 0.00261 | 0.00052 | 0.00049 | 0.00033 |
PT | 0.00256 | 0.00273 | 0.00273 | 0.00217 | 0.00000 | 0.00003 | 0.00000 |
RO | 0.00232 | 0.00316 | 0.00316 | 0.00211 | 0.00000 | 0.00008 | 0.00039 |
RS | 0.00236 | 0.00062 | 0.00062 | 0.00127 | 0.00365 | 0.00528 | 0.00314 |
SE | 0.00188 | 0.00294 | 0.00294 | 0.00268 | 0.00000 | 0.00000 | 0.00003 |
SI | 0.00260 | 0.00263 | 0.00263 | 0.00240 | 0.00854 | 0.00693 | 0.00620 |
SK | 0.00286 | 0.00249 | 0.00249 | 0.00245 | 0.01066 | 0.01055 | 0.01026 |
Type 1 | m = 1 | m = 2 | m = 3 | m = 4 | m = 5 | Type 2 | m = 1 | m = 2 | m = 3 | m = 4 | m = 5 |
---|---|---|---|---|---|---|---|---|---|---|---|
Min. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | Min. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
1st Qu. | 0.491 | 0.500 | 0.524 | 0.731 | 1.324 | 1st Qu. | 0.509 | 0.522 | 0.554 | 0.801 | 1.492 |
Median | 1.040 | 1.058 | 1.109 | 1.548 | 2.803 | Median | 1.077 | 1.106 | 1.174 | 1.696 | 3.155 |
Mean | 1.230 | 1.251 | 1.312 | 1.831 | 3.314 | Mean | 1.277 | 1.311 | 1.390 | 2.005 | 3.732 |
3rd Qu. | 1.772 | 1.803 | 1.891 | 2.640 | 4.779 | 3rd Qu. | 1.839 | 1.888 | 2.003 | 2.890 | 5.378 |
Max. | 8.571 | 8.597 | 9.387 | 13.480 | 20.753 | Max. | 9.176 | 9.133 | 9.944 | 14.549 | 24.916 |
Std. Dev. | 0.929 | 0.946 | 0.991 | 1.384 | 2.502 | Std. Dev. | 0.968 | 0.993 | 1.053 | 1.513 | 2.820 |
Type 3 | m = 1 | m = 2 | m = 3 | m = 4 | m = 5 | Type 4 | m = 1 | m = 2 | m = 3 | m = 4 | m = 5 |
Min. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | Min. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
1st Qu. | 0.481 | 0.489 | 0.505 | 0.657 | 0.826 | 1st Qu. | 0.507 | 0.522 | 0.553 | 0.746 | 0.979 |
Median | 1.017 | 1.034 | 1.070 | 1.391 | 1.749 | Median | 1.074 | 1.106 | 1.170 | 1.579 | 2.071 |
Mean | 1.204 | 1.224 | 1.266 | 1.645 | 2.067 | Mean | 1.269 | 1.308 | 1.384 | 1.867 | 2.447 |
3rd Qu. | 1.735 | 1.764 | 1.825 | 2.371 | 2.981 | 3rd Qu. | 1.830 | 1.885 | 1.994 | 2.692 | 3.529 |
Max. | 9.360 | 8.398 | 8.887 | 11.317 | 14.086 | Max. | 9.510 | 8.909 | 9.651 | 13.414 | 17.055 |
Std. Dev. | 0.910 | 0.925 | 0.957 | 1.241 | 1.559 | Std. Dev. | 0.959 | 0.988 | 1.046 | 1.410 | 1.846 |
Type 5 | m = 1 | m = 2 | m = 3 | m = 4 | m = 5 | Type 6 | m = 1 | m = 2 | m = 3 | m = 4 | m = 5 |
Min. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | Min. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
1st Qu. | 0.591 | 0.621 | 0.694 | 0.856 | 1.445 | 1st Qu. | 0.650 | 0.693 | 0.785 | 0.988 | 1.663 |
Median | 1.251 | 1.313 | 1.470 | 1.812 | 3.060 | Median | 1.376 | 1.465 | 1.661 | 2.092 | 3.518 |
Mean | 1.482 | 1.555 | 1.740 | 2.145 | 3.619 | Mean | 1.627 | 1.734 | 1.965 | 2.472 | 4.161 |
3rd Qu. | 2.134 | 2.240 | 2.507 | 3.092 | 5.219 | 3rd Qu. | 2.344 | 2.498 | 2.832 | 3.564 | 5.995 |
Max. | 10.234 | 10.696 | 12.267 | 15.043 | 23.159 | Max. | 10.674 | 12.484 | 14.564 | 17.811 | 27.340 |
Std. Dev. | 1.123 | 1.177 | 1.316 | 1.622 | 2.732 | Std. Dev. | 1.230 | 1.310 | 1.486 | 1.866 | 3.144 |
Ordered by Min. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
p1 | p2 | q1 | q2 | σ | Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | Rank of Min. |
0.9 | −0.1 | 0 | 0 | 0.5 | 1.4661 | 1.9177 | 2.0306 | 2.0297 | 2.1354 | 2.5083 | 1 |
0.9 | −0.1 | 0.1 | −0.1 | 0.5 | 1.5046 | 1.9368 | 2.0315 | 2.0332 | 2.1366 | 2.4637 | 2 |
0.9 | −0.1 | 0.9 | −0.1 | 0.5 | 1.5049 | 2.1460 | 2.3043 | 2.3051 | 2.4645 | 2.9583 | 3 |
… | … | … | … | … | … | … | … | … | … | … | … |
0.5 | 0 | 0.1 | −0.9 | 0.5 | 1.7347 | 1.9058 | 1.9500 | 1.9523 | 1.9960 | 2.1738 | 182 |
0.5 | 0 | 0.5 | 0 | 1 | 1.7349 | 2.2410 | 2.3845 | 2.3865 | 2.5276 | 3.1189 | 183 |
0.1 | 0 | 0.5 | −0.1 | 1 | 1.7352 | 2.0675 | 2.1639 | 2.1653 | 2.2585 | 2.8228 | 184 |
… | … | … | … | … | … | … | … | … | … | … | … |
0.9 | −0.9 | 0.9 | −0.9 | 3 | 8.0308 | 12.0483 | 14.1398 | 14.3271 | 16.1338 | 23.0627 | 1278 |
0.5 | −0.9 | 0.5 | −0.9 | 3 | 8.5648 | 11.2834 | 13.0415 | 13.1584 | 14.5845 | 20.1327 | 1279 |
0.1 | −0.9 | 0.1 | −0.9 | 3 | 8.7253 | 11.5559 | 12.9434 | 13.1067 | 14.6889 | 18.5814 | 1280 |
Ordered by 1st Qu. | |||||||||||
p1 | p2 | q1 | q2 | σ | Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | Rank of 1st Qu. |
0.9 | −0.1 | 0.5 | −0.1 | 0.1 | 1.7032 | 1.8142 | 1.8473 | 1.8468 | 1.8780 | 2.0185 | 1 |
0.9 | −0.1 | 0.9 | −0.5 | 0.1 | 1.7183 | 1.8167 | 1.8504 | 1.8508 | 1.8822 | 2.0063 | 2 |
0.9 | −0.1 | 0.5 | 0 | 0.1 | 1.7151 | 1.8173 | 1.8468 | 1.8476 | 1.8781 | 1.9892 | 3 |
… | … | … | … | … | … | … | … | … | … | … | … |
0.9 | 0 | 0.9 | −0.5 | 0.5 | 1.6788 | 2.2398 | 2.4139 | 2.4315 | 2.6208 | 3.2917 | 566 |
0.5 | 0 | 0.5 | 0 | 1 | 1.7349 | 2.2410 | 2.3845 | 2.3865 | 2.5276 | 3.1189 | 567 |
0.5 | −0.1 | 0 | −0.9 | 1 | 1.8888 | 2.2413 | 2.3207 | 2.3233 | 2.4049 | 2.8344 | 568 |
… | … | … | … | … | … | … | … | … | … | … | … |
0.9 | −0.9 | 0.9 | −0.5 | 3 | 7.8604 | 11.9901 | 13.7685 | 14.1326 | 15.5950 | 23.6238 | 1278 |
0.9 | −0.9 | 0.9 | −0.9 | 3 | 8.0308 | 12.0483 | 14.1398 | 14.3271 | 16.1338 | 23.0627 | 1279 |
0.5 | −0.9 | 0.9 | −0.9 | 3 | 6.8878 | 12.5605 | 14.0433 | 14.3611 | 16.3422 | 24.0162 | 1280 |
Ordered by Median | |||||||||||
p1 | p2 | q1 | q2 | σ | Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | Rank of Median |
0 | −0.1 | 0.1 | 0 | 0.1 | 1.8016 | 1.8280 | 1.8343 | 1.8346 | 1.8413 | 1.8694 | 1 |
0.1 | 0 | 0 | 0 | 0.1 | 1.7911 | 1.8270 | 1.8343 | 1.8346 | 1.8418 | 1.8807 | 2 |
0 | −0.1 | 0.1 | −0.1 | 0.1 | 1.8004 | 1.8280 | 1.8344 | 1.8347 | 1.8416 | 1.8748 | 3 |
… | … | … | … | … | … | … | … | … | … | … | … |
0 | −0.5 | 0.9 | −0.1 | 1 | 1.9180 | 2.2898 | 2.3798 | 2.3851 | 2.4772 | 2.8140 | 583 |
0.5 | 0 | 0.5 | 0 | 1 | 1.7349 | 2.2410 | 2.3845 | 2.3865 | 2.5276 | 3.1189 | 584 |
0.5 | −0.1 | 0.5 | −0.9 | 1 | 1.9244 | 2.2957 | 2.3894 | 2.3911 | 2.4874 | 2.9116 | 585 |
… | … | … | … | … | … | … | … | … | … | … | … |
0.9 | −0.9 | 0.9 | −0.5 | 3 | 7.8604 | 11.9901 | 13.7685 | 14.1326 | 15.5950 | 23.6238 | 1278 |
0.5 | −0.9 | 0.9 | −0.9 | 3 | 6.8878 | 12.5605 | 14.0433 | 14.3611 | 16.3422 | 24.0162 | 1279 |
0.9 | −0.9 | 0.9 | −0.9 | 3 | 8.0308 | 12.0483 | 14.1398 | 14.3271 | 16.1338 | 23.0627 | 1280 |
Ordered by Mean | |||||||||||
p1 | p2 | q1 | q2 | σ | Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | Rank of Mean |
0.1 | 0 | 0 | −0.1 | 0.1 | 1.8002 | 1.8276 | 1.8345 | 1.8345 | 1.8415 | 1.8769 | 1 |
0 | −0.1 | 0.1 | 0 | 0.1 | 1.8016 | 1.8280 | 1.8343 | 1.8346 | 1.8413 | 1.8694 | 2 |
0 | −0.1 | 0 | 0 | 0.1 | 1.8034 | 1.8284 | 1.8346 | 1.8346 | 1.8406 | 1.8659 | 3 |
… | … | … | … | … | … | … | … | … | … | … | … |
0 | −0.5 | 0.9 | −0.1 | 1 | 1.9180 | 2.2898 | 2.3798 | 2.3851 | 2.4772 | 2.8140 | 581 |
0.5 | 0 | 0.5 | 0 | 1 | 1.7349 | 2.2410 | 2.3845 | 2.3865 | 2.5276 | 3.1189 | 582 |
0.5 | −0.1 | 0.5 | −0.9 | 1 | 1.9244 | 2.2957 | 2.3894 | 2.3911 | 2.4874 | 2.9116 | 583 |
… | … | … | … | … | … | … | … | … | … | … | … |
0.9 | −0.9 | 0.9 | −0.5 | 3 | 7.8604 | 11.9901 | 13.7685 | 14.1326 | 15.5950 | 23.6238 | 1278 |
0.9 | −0.9 | 0.9 | −0.9 | 3 | 8.0308 | 12.0483 | 14.1398 | 14.3271 | 16.1338 | 23.0627 | 1279 |
0.5 | −0.9 | 0.9 | −0.9 | 3 | 6.8878 | 12.5605 | 14.0433 | 14.3611 | 16.3422 | 24.0162 | 1280 |
Ordered by 3rd Qu. | |||||||||||
p1 | p2 | q1 | q2 | σ | Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | Rank of 3rd Qu. |
0 | −0.1 | 0 | −0.1 | 0.1 | 1.8054 | 1.8288 | 1.8346 | 1.8346 | 1.8404 | 1.8645 | 1 |
0.1 | −0.1 | 0 | −0.5 | 0.1 | 1.8059 | 1.8297 | 1.8355 | 1.8356 | 1.8415 | 1.8657 | 2 |
0 | −0.1 | 0 | 0 | 0.1 | 1.8034 | 1.8284 | 1.8346 | 1.8346 | 1.8406 | 1.8659 | 3 |
… | … | … | … | … | … | … | … | … | … | … | … |
0 | −0.5 | 0.1 | −0.9 | 1 | 2.0827 | 2.4569 | 2.5680 | 2.5718 | 2.6840 | 3.1144 | 593 |
0.5 | 0 | 0.5 | 0 | 1 | 1.7349 | 2.2410 | 2.3845 | 2.3865 | 2.5276 | 3.1189 | 594 |
0.1 | −0.5 | 0.5 | −0.5 | 1 | 1.9588 | 2.3820 | 2.4820 | 2.4880 | 2.5820 | 3.1269 | 595 |
… | … | … | … | … | … | … | … | … | … | … | … |
0.9 | −0.9 | 0.9 | −0.5 | 3 | 7.8604 | 11.9901 | 13.7685 | 14.1326 | 15.5950 | 23.6238 | 1278 |
0.5 | −0.9 | 0 | −0.9 | 3 | 6.8470 | 10.6696 | 11.9222 | 12.6854 | 14.4462 | 23.8760 | 1279 |
0.5 | −0.9 | 0.9 | −0.9 | 3 | 6.8878 | 12.5605 | 14.0433 | 14.3611 | 16.3422 | 24.0162 | 1280 |
Ordered by Max. | |||||||||||
p1 | p2 | q1 | q2 | σ | Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | Rank of Max. |
0.9 | −0.1 | 0 | 0 | 0.5 | 1.4661 | 1.9177 | 2.0306 | 2.0297 | 2.1354 | 2.5083 | 1 |
0.9 | −0.1 | 0.1 | −0.1 | 0.5 | 1.5046 | 1.9368 | 2.0315 | 2.0332 | 2.1366 | 2.4637 | 2 |
0.9 | −0.1 | 0.9 | −0.1 | 0.5 | 1.5049 | 2.1460 | 2.3043 | 2.3051 | 2.4645 | 2.9583 | 3 |
… | … | … | … | … | … | … | … | … | … | … | … |
0.5 | 0 | 0.1 | −0.9 | 0.5 | 1.7347 | 1.9058 | 1.9500 | 1.9523 | 1.9960 | 2.1738 | 182 |
0.5 | 0 | 0.5 | 0 | 1 | 1.7349 | 2.2410 | 2.3845 | 2.3865 | 2.5276 | 3.1189 | 183 |
0.1 | 0 | 0.5 | −0.1 | 1 | 1.7352 | 2.0675 | 2.1639 | 2.1653 | 2.2585 | 2.8228 | 184 |
… | … | … | … | … | … | … | … | … | … | … | … |
0.9 | −0.9 | 0.9 | −0.9 | 3 | 8.0308 | 12.0483 | 14.1398 | 14.3271 | 16.1338 | 23.0627 | 1278 |
0.5 | −0.9 | 0.5 | −0.9 | 3 | 8.5648 | 11.2834 | 13.0415 | 13.1584 | 14.5845 | 20.1327 | 1279 |
0.1 | −0.9 | 0.1 | −0.9 | 3 | 8.7253 | 11.5559 | 12.9434 | 13.1067 | 14.6889 | 18.5814 | 1280 |
Rank of Min. | Rank of 1st Qu. | Rank of Median | Rank of Mean | Rank of 3rd Qu. | Rank of Max. |
---|---|---|---|---|---|
183 | 567 | 584 | 582 | 594 | 183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, J.; Moon, J. Bayesian Model Selection for Addressing Cold-Start Problems in Partitioned Time Series Prediction. Mathematics 2024, 12, 2682. https://doi.org/10.3390/math12172682
Yoo J, Moon J. Bayesian Model Selection for Addressing Cold-Start Problems in Partitioned Time Series Prediction. Mathematics. 2024; 12(17):2682. https://doi.org/10.3390/math12172682
Chicago/Turabian StyleYoo, Jaeseong, and Jihoon Moon. 2024. "Bayesian Model Selection for Addressing Cold-Start Problems in Partitioned Time Series Prediction" Mathematics 12, no. 17: 2682. https://doi.org/10.3390/math12172682
APA StyleYoo, J., & Moon, J. (2024). Bayesian Model Selection for Addressing Cold-Start Problems in Partitioned Time Series Prediction. Mathematics, 12(17), 2682. https://doi.org/10.3390/math12172682