Superconvergence of Modified Nonconforming Cut Finite Element Method for Elliptic Problems
Abstract
:1. Introduction
2. The Model Problem and the Finite Element Formulation
3. Supercloseness Analysis
4. Postprocessing and Superconvergence
5. Numerical Examples
5.1. Example 1
5.2. Example 2
5.3. Example 3
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansbo, A.; Hansbo, P. An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 2002, 191, 5537–5552. [Google Scholar] [CrossRef]
- Burman, E.; Hansbo, P. Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput. Methods Appl. Mech. Eng. 2010, 199, 2680–2686. [Google Scholar] [CrossRef]
- Hansbo, P.; Larson, M.G.; Zahedi, S. A cut finite element method for a Stokes interface problem. Appl. Numer. Math. 2014, 85, 90–114. [Google Scholar] [CrossRef]
- Huang, P.; Wu, H.; Xiao, Y. An unfitted interface penalty finite element method for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 2017, 323, 439–460. [Google Scholar] [CrossRef]
- Wang, N.; Chen, J. A nonconforming Nitsche’s extended finite element method for Stokes interface problems. J. Sci. Comput. 2019, 81, 342–374. [Google Scholar] [CrossRef]
- Massing, A.; Schott, B.; Wall, W.A. A stabilized Nitsche cut finite element method for the Oseen problem. Comput. Methods Appl. Mech. Eng. 2018, 328, 262–300. [Google Scholar] [CrossRef]
- Burman, E.; Claus, S.; Hansbo, P.; Larson, M.G.; Massing, A. CutFEM: Discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 2015, 104, 472–501. [Google Scholar] [CrossRef]
- Lin, Q.; Yan, N. The Construction and Analysis of High Effciency Finite Element Methods; Hebei University Publishers: Baoding, China, 1996. (In Chinese) [Google Scholar]
- Zienkiewicz, O.C.; Zhu, J.Z. The superconvergent patch recovery and a posteriori error estimates. I. the recovery technique. Int. J. Numer. Methods Eng. 1992, 33, 1331–1364. [Google Scholar] [CrossRef]
- Naga, A.; Zhang, Z. A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 2004, 42, 1780–1800. [Google Scholar] [CrossRef]
- Bank, R.E.; Xu, J.; Zheng, B. Superconvergent derivative recovery for lagrange triangular elements of degree p on unstructured grids. SIAM J. Numer. Anal. 2007, 45, 2032–2046. [Google Scholar] [CrossRef]
- Lin, Q.; Tobiska, L.; Zhou, A. Superconvergence and extrapolation of non-conforming low order finite elements applied to the poisson equation. IMA J. Numer. Anal. 2005, 25, 160–181. [Google Scholar] [CrossRef]
- Mao, S.; Chen, S.; Shi, D. Convergence and superconvergence of a nonconforming finite element on anisotropic mehses. Int. J. Numer. Anal. Model. 2007, 4, 16–38. [Google Scholar]
- Hu, J.; Ma, R. Superconvergence of both the Crouzeix-Raviart and morley elements. Numer. Math. 2016, 132, 491–509. [Google Scholar] [CrossRef]
- Li, Y. Superconvergent flux recovery of the Rannacher-Turek nonconforming element. J. Sci. Comput. 2021, 87, 32. [Google Scholar] [CrossRef]
- Ming, P.; Shi, Z. Superconvergence studies of quadrilateral nonconforming rotated Q1 elements. Int. J. Numer. Anal. Model. 2006, 3, 322–332. [Google Scholar]
- Stein, E. Singular Integrals and Differentiability Properties of Functions; Princeton University Press: Princeton, NJ, USA, 1970; Volume 30. [Google Scholar]
- Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, 2nd ed.; Springer: Berlin, Germany, 1983; Volume 224. [Google Scholar]
- He, X.; Song, F.; Deng, W. A well-conditioned, nonconforming Nitsche’s extended finite element method for elliptic interface problems. Numer. Math. Theory Methods Appl. 2020, 13, 99–130. [Google Scholar]
- Arnold, D.; Boffi, D.; Falk, R. Approximation by quadrilateral elements. Math. Comput. 2002, 71, 909–922. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Ji, H.; Wang, H. Superconvergence of unfitted rannacher-turek nonconforming element for elliptic interface problems. Appl. Numer. Math. 2024, 203, 32–51. [Google Scholar] [CrossRef]
Rate | Rate | Rate | |||||
---|---|---|---|---|---|---|---|
9.3335 | 8.6752 | 8.7346 | |||||
4.1432 | 1.1716 | 3.4709 | 1.3215 | 3.6997 | 1.2393 | ||
1.8062 | 1.1977 | 1.2783 | 1.4410 | 1.4339 | 1.3674 | ||
8.1059 | 1.1559 | 4.5268 | 1.4977 | 5.1910 | 1.4658 | ||
1.4864 | 1.4406 | 1.5410 | |||||
7.0590 | 1.0742 | 6.3422 | 1.1836 | 7.0242 | 1.1335 | ||
3.0848 | 1.1942 | 2.4337 | 1.3818 | 2.6597 | 1.4010 | ||
1.3424 | 1.2003 | 8.5553 | 1.5082 | 9.9456 | 1.4191 | ||
1.1737 | 1.1222 | 1.0300 | |||||
5.1093 | 1.1998 | 4.4336 | 1.3398 | 4.4650 | 1.2060 | ||
2.2139 | 1.2065 | 1.6559 | 1.4208 | 1.7724 | 1.3329 | ||
9.8307 | 1.1712 | 5.9211 | 1.4836 | 6.5601 | 1.4339 |
Rate | Rate | Rate | |||||
---|---|---|---|---|---|---|---|
9.0498 | 8.0253 | 8.7898 | |||||
3.8709 | 1.2252 | 2.9733 | 1.4324 | 3.3166 | 1.4061 | ||
1.7297 | 1.1621 | 1.0919 | 1.4452 | 1.2686 | 1.3864 | ||
7.8501 | 1.1397 | 3.7896 | 1.5267 | 4.3814 | 1.5337 | ||
1.4929 | 1.3847 | 1.4334 | |||||
6.3781 | 1.2269 | 5.2454 | 1.4004 | 5.1589 | 1.4743 | ||
2.7873 | 1.1942 | 1.9036 | 1.4622 | 2.0169 | 1.3548 | ||
1.2656 | 1.1390 | 6.7447 | 1.4969 | 7.4012 | 1.4463 | ||
1.5692 | 1.4741 | 1.7173 | |||||
7.0478 | 1.1547 | 6.0883 | 1.2757 | 7.0293 | 1.2887 | ||
2.9559 | 1.2535 | 2.1598 | 1.4951 | 2.6111 | 1.4287 | ||
1.3058 | 1.1786 | 7.5276 | 1.5206 | 9.2699 | 1.4940 |
Rate | Rate | Rate | |||||
---|---|---|---|---|---|---|---|
3.4465 | 3.1674 | 3.1945 | |||||
1.3095 | 1.3961 | 1.1489 | 1.4629 | 1.1297 | 1.4996 | ||
5.3084 | 1.3026 | 4.0167 | 1.5162 | 3.8787 | 1.5423 | ||
2.3179 | 1.1954 | 1.4131 | 1.5070 | 1.4416 | 1.4279 | ||
2.1853 | 1.9994 | 1.9957 | |||||
9.1487 | 1.2561 | 7.4441 | 1.4254 | 7.2634 | 1.4582 | ||
3.9748 | 1.2026 | 2.8217 | 1.3995 | 2.9227 | 1.3133 | ||
1.7577 | 1.1771 | 9.6124 | 1.5536 | 1.0655 | 1.4557 | ||
2.5133 | 2.2064 | 2.7792 | |||||
9.8588 | 1.3500 | 8.0975 | 1.4461 | 8.5858 | 1.6946 | ||
4.2002 | 1.2309 | 2.9083 | 1.4772 | 3.2786 | 1.3888 | ||
1.9020 | 1.1429 | 1.0599 | 1.4561 | 1.1400 | 1.5239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Song, F. Superconvergence of Modified Nonconforming Cut Finite Element Method for Elliptic Problems. Mathematics 2024, 12, 2595. https://doi.org/10.3390/math12162595
He X, Song F. Superconvergence of Modified Nonconforming Cut Finite Element Method for Elliptic Problems. Mathematics. 2024; 12(16):2595. https://doi.org/10.3390/math12162595
Chicago/Turabian StyleHe, Xiaoxiao, and Fei Song. 2024. "Superconvergence of Modified Nonconforming Cut Finite Element Method for Elliptic Problems" Mathematics 12, no. 16: 2595. https://doi.org/10.3390/math12162595
APA StyleHe, X., & Song, F. (2024). Superconvergence of Modified Nonconforming Cut Finite Element Method for Elliptic Problems. Mathematics, 12(16), 2595. https://doi.org/10.3390/math12162595