Laplace-Logistic Unit Distribution with Application in Dynamic and Regression Analysis
Abstract
:1. Introduction
2. The LLU Distribution
2.1. Definition and Main Properties
- (i)
- When and , it is decreasing.
- (ii)
- When and , it is increasing.
- (iii)
- When , and , it is left-tailed and right-vanishing.
- (iv)
- When , and , it is right-tailed and left-vanishing.
- (v)
- When and , it is (both sides) tailed.
- (vi)
- When and , it is (both sides) vanishing.
2.2. Cumulative, Hazard, and Quantile Functions
- (i)
- When and , it is (both sides) tailed with a local maximum at .
- (ii)
- When and , it is (both sides) tailed without maxima, that is, bathtub-shaped.
- (iii)
- When and , it is left-vanishing with a local maximum at .
- (iv)
- When and , it is increasing.
- (i)
- The RV X is symmetrically distributed if and only if . Otherwise, X is positively asymmetric when , and negatively asymmetric when .
- (ii)
- The RV X is unimodal, with the mode , if and only if and .
2.3. Income Distribution and Entropy
3. Parameter Estimation and Simulation Study
4. Applications of the LLU Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakouch, H.S.; Hussain, T.; Tošić, M.; Stojanović, V.S.; Qarmalah, N. Unit Exponential Probability Distribution: Characterization and Applications in Environmental and Engineering Data Modeling. Mathematics 2023, 11, 4207. [Google Scholar] [CrossRef]
- Nasiru, S.; Abubakari, A.G.; Chesneau, C. The Arctan Power Distribution: Properties, Quantile and Modal Regressions with Applications to Biomedical Data. Math. Comput. Appl. 2023, 28, 25. [Google Scholar] [CrossRef]
- Fayomi, A.; Hassan, A.S.; Baaqeel, H.; Almetwally, E.M. Bayesian Inference and Data Analysis of the Unit–Power Burr X Distribution. Axioms 2023, 12, 297. [Google Scholar] [CrossRef]
- Salinas, H.S.; Bakouch, H.S.; Almuhayfith, F.E.; Caimanque, W.E.; Barrios-Blanco, L.; Albalawi, O. Statistical Advancement of a Flexible Unitary Distribution and Its Applications. Axioms 2024, 13, 397. [Google Scholar] [CrossRef]
- Condino, F.; Domma, F. Unit Distributions: A General Framework, Some Special Cases, and the Regression Unit-Dagum Models. Mathematics 2023, 11, 2888. [Google Scholar] [CrossRef]
- Krishna, A.; Maya, R.; Chesneau, C.; Irshad, M.R. The Unit Teissier Distribution and Its Applications. Math. Comput. Appl. 2022, 27, 12. [Google Scholar] [CrossRef]
- Korkmaz, M.C.; Korkmaz, Z.S. The Unit Log–log Distribution: A New Unit Distribution with Alternative Quantile Regression Modeling and Educational Measurements Applications. J. Appl. Stat. 2023, 50, 889–908. [Google Scholar] [CrossRef] [PubMed]
- Biçer, C.; Bakouch, H.S.; Biçer, H.D.; Alomair, G.; Hussain, T.; Almohisen, A. Unit Maxwell-Boltzmann Distribution and Its Application to Concentrations Pollutant Data. Axioms 2024, 13, 226. [Google Scholar] [CrossRef]
- Nasiru, S.; Chesneau, C.; Ocloo, S.K. The Log-Cosine-Power Unit Distribution: A New Unit Distribution for Proportion Data Analysis. Decis. Anal. J. 2024, 10, 100397. [Google Scholar] [CrossRef]
- Alsadat, N.; Taniş, C.; Sapkota, L.P.; Kumar, A.; Marzouk, W.; Gemeay, A.M. Inverse unit exponential probability distribution: Classical and Bayesian inference with applications. AIP Adv. 2024, 14, 055108. [Google Scholar] [CrossRef]
- Stojanović, V.S.; Bojičić, R.; Pažun, B.; Langović, Z. Quasi-Lindley Unit Distribution: Properties and Applications in Stochastic Data Modeling. UPB Sci. Bull. Ser. A, 2024; submitted manuscript. [Google Scholar]
- Stojanović, V.S.; Jovanović Spasojević, T.; Pažun, B.; Langović, Z. Cauchy-Logistic Unit Distribution: Properties and Application in Modeling Data Extremes. An. Sti. U. Ovid. Co.-Mat. 2024; submitted manuscript. [Google Scholar]
- Rundel, C.W. Bayesian Methods for Spatial Assignment of Migratory Birds; University of California: Los Angeles, CA, USA, 2012. [Google Scholar]
- Giles, D. Calculating a Standard Error for the Gini Coefficient: Some Further Results. Oxf. B Econ. Stat. 2004, 66, 425–433. [Google Scholar] [CrossRef]
- Jurdana, V. Local Rényi Entropy-Based Gini Index for Measuring and Optimizing Sparse Time-Frequency Distributions. Digit. Signal Process. 2024, 147, 104401. [Google Scholar] [CrossRef]
- Özçag, E.; Ege, I.; Gürçay, H.; Jolevska-Tuneska, B. On Partial Derivatives of the Incomplete Beta Function. Appl. Math. Lett. 2008, 21, 675–681. [Google Scholar] [CrossRef]
- Norton, R.M. The Double Exponential Distribution: Using Calculus to Find a Maximum Likelihood Estimator. Am. Stat. 1984, 38, 135–136. [Google Scholar] [CrossRef]
- Dudek, D.; Kuczmaszewska, A. Some Practical and Theoretical Issues Related to the Quantile Estimators. Stat. Pap. 2024, 65, 3917–3933. [Google Scholar] [CrossRef]
- Serfling, R.J. Approximation Theorems of Mathematical Statistics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Ruckdeschel, P.; Kohl, M.; Stabla, T.; Camphausen, F. S4 Classes for Distributions. R News 2006, 6, 2–6. Available online: https://CRAN.R-project.org/doc/Rnews (accessed on 1 May 2024).
- Available online: https://github.com/microsoft/USBroadbandUsagePercentages/tree/master/dataset (accessed on 12 May 2024).
- Kameda, T.; Narita, H.; Shoji, H.; Nishio, F.; Fujii, Y.; Watanabe, O. South Greenland Site J Ice Core Melt Percent and Temperature Reconstruction; IGBP PAGES/World Data Center for Paleoclimatology, Data Contribution Series # 2004-031; NOAA/NGDC Paleoclimatology Program: Boulder, CO, USA, 2004. Available online: https://www.ncei.noaa.gov/pub/data/paleo/icecore/greenland/sitej_melt.txt (accessed on 12 May 2024).
- Nasdaq. Available online: https://nasdaq.com (accessed on 12 May 2024).
- Stojanović, V.S.; Bakouch, H.S.; Ljajko, E.; Božović, I. Laplacian Split-BREAK Process with Application in Dynamic Analysis of the World Oil and Gas Market. Axioms 2023, 12, 622. [Google Scholar] [CrossRef]
- Kachiashvili, K.J.; Melikdzhanjan, D.I. Estimators of the Parameters of Beta Distribution. Sankhya B 2019, 81, 350–373. [Google Scholar] [CrossRef]
- Dey, S.; Mazucheli, J.; Nadarajah, S. Kumaraswamy Distribution: Different Methods of Estimation. Comp. Appl. Math. 2018, 37, 2094–2111. [Google Scholar] [CrossRef]
Statistics | ||||||
---|---|---|---|---|---|---|
Min. | 1.770 | 0.1773 | 2.247 | 0.2190 | 2.676 | 0.2400 |
Mean | 3.210 | 0.2850 | 3.378 | 0.2883 | 3.459 | 0.2928 |
Max. | 5.907 | 0.4094 | 4.099 | 0.3660 | 3.650 | 0.3195 |
SD | 0.0636 | 0.0448 | 0.0332 | 0.0260 | 0.0180 | 0.0150 |
MSEE | 0.0790 | 0.0471 | 0.0722 | 0.0335 | 0.0712 | 0.0269 |
FEE (%) | 8.286 | 15.715 | 3.486 | 11.029 | 1.171 | 8.959 |
0.8939 ∗ | 1.6913 ∗∗ | 0.3090 | 0.6818 | 0.3796 | 0.1678 | |
(p-value) | (0.0221) | (2.38 ) | (0.5553) | (0.0739) | (0.4013) | (0.9359) |
W | 0.9823 ∗ | 0.9806 ∗∗ | 0.9919 | 0.9864 | 0.9952 | 0.9878 |
(p-value) | (0.0126) | (7.31 ) | (0.3300) | (0.0523) | (0.7768) | (0.0851) |
Statistics | ||||||
---|---|---|---|---|---|---|
Min. | 0.5990 | 0.2161 | 0.7375 | 0.2369 | 0.8494 | 0.2602 |
Mean | 1.0254 | 0.3054 | 1.0170 | 0.2987 | 1.0018 | 0.2968 |
Max. | 1.8447 | 0.5394 | 1.4075 | 0.3824 | 1.2316 | 0.3477 |
SD | 0.1907 | 0.0508 | 0.1224 | 0.0252 | 0.0698 | 0.0156 |
MSEE | 0.0254 | 0.1169 | 0.0170 | 0.1019 | 0.0020 | 0.0981 |
FEE (%) | 2.1346 | 34.453 | 0.5739 | 24.476 | 0.2030 | 21.908 |
1.1064 ∗∗ | 1.481 ∗∗ | 0.6684 | 0.8172 ∗ | 0.5166 | 0.6030 | |
(p-value) | (6.58 ) | (7.83 ) | (0.0798) | (0.0341) | (0.1879) | (0.1159) |
W | 0.9814 ∗∗ | 0.9797 ∗∗ | 0.9912 | 0.9844 ∗ | 0.9914 | 0.9931 |
(p-value) | (9.36 ) | (5.38 ) | (0.2641) | (0.0264) | (0.2808) | (0.4755) |
Statistics | ||||||
---|---|---|---|---|---|---|
Min. | 0.9036 | 1.4760 | 0.9529 | 1.657 | 0.9698 | 1.860 |
Mean | 1.0048 | 2.0360 | 1.0009 | 2.024 | 1.0003 | 2.016 |
Max. | 2.6290 | 1.1179 | 1.0606 | 2.483 | 1.0262 | 2.243 |
SD | 0.0305 | 0.2603 | 0.0166 | 0.1451 | 9.20 | 0.0767 |
MSEE | 4.78 | 0.2621 | 8.88 | 0.1466 | 2.71 | 0.0782 |
FEE (%) | 0.4783 | 13.106 | 0.0888 | 7.3314 | 0.0271 | 3.9117 |
0.4960 | 0.8509 ∗ | 0.4029 | 0.2194 | 0.2951 | 0.3024 | |
(p-value) | (0.2113) | (0.0282) | (0.3539) | (0.8346) | (0.5930) | (0.5726) |
W | 0.9885 | 0.9861 ∗ | 0.9942 | 0.9912 | 0.9945 | 0.9926 |
(p-value) | (0.1084) | (0.0471) | (0.6338) | (0.2678) | (0.6722) | (0.4160) |
Parameter/ | Series A | Series B | Series C | ||||||
---|---|---|---|---|---|---|---|---|---|
Statistic | LLU | BETA | KUM | LLU | BETA | KUM | LLU | BETA | KUM |
0.2972 | 1.6572 | 4.1901 | 2.5106 | 1.9375 | 1.6443 | 35.459 | 1133.27 | 11.782 | |
8.4338 | 0.3394 | 0.5469 | 0.3436 | 10.299 | 16.048 | 0.9999 | 1133.21 | 3421.22 | |
MSEE | 0.0091 | 0.0139 | 0.0342 | 0.0025 | 0.0039 | 0.0041 | 1.31 | 2.28 | 0.0200 |
AIC | −812.13 | −398.61 | −310.69 | −2671.99 | −891.80 | −899.90 | −17785.9 | −8173.7 | −4244.88 |
0.0892 | 0.0797 | 0.1077 | 0.0541 | 0.0676 | 0.1216 ∗∗ | 0.0215 | 0.0760 ∗ | 0.4524 ∗∗ | |
(p-value) | (0.2534) | (0.3818) | (0.0986) | (0.5354) | (0.2629) | (0.0028) | (0.9241) | (0.0108) | (0.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanović, V.S.; Jovanović Spasojević, T.; Jovanović, M. Laplace-Logistic Unit Distribution with Application in Dynamic and Regression Analysis. Mathematics 2024, 12, 2282. https://doi.org/10.3390/math12142282
Stojanović VS, Jovanović Spasojević T, Jovanović M. Laplace-Logistic Unit Distribution with Application in Dynamic and Regression Analysis. Mathematics. 2024; 12(14):2282. https://doi.org/10.3390/math12142282
Chicago/Turabian StyleStojanović, Vladica S., Tanja Jovanović Spasojević, and Mihailo Jovanović. 2024. "Laplace-Logistic Unit Distribution with Application in Dynamic and Regression Analysis" Mathematics 12, no. 14: 2282. https://doi.org/10.3390/math12142282
APA StyleStojanović, V. S., Jovanović Spasojević, T., & Jovanović, M. (2024). Laplace-Logistic Unit Distribution with Application in Dynamic and Regression Analysis. Mathematics, 12(14), 2282. https://doi.org/10.3390/math12142282