Enhancing Stability Criteria for Linear Systems with Interval Time-Varying Delays via an Augmented Lyapunov–Krasovskii Functional
Abstract
1. Introduction
2. Problem Statement
3. Main Results
4. Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LKF | Lyapunov–Krasovskii functional |
WBII | Wirtinger-based integral inequality |
LMI | Linear matrix inequality |
BOD | biochemical oxygen demand |
DO | dissolved oxygen |
NoDVs | number of decision variables |
References
- Niculescu, S.I. Delay Effects on Stability: A Robust Control Approach; Springer Science+Business Media: London, UK, 2001; Volume 269. [Google Scholar]
- Richard, J.P. Time-delay systems: An overview of some recent advances and open problems. Automatica 2003, 39, 1667–1694. [Google Scholar] [CrossRef]
- Kwon, O.M.; Park, M.J.; Park, J.H.; Lee, S.M. Enhancement on stability criteria for linear systems with interval time-varying delays. Int. J. Control Autom. Syst. 2016, 14, 12–20. [Google Scholar] [CrossRef]
- Barbashin, E.A. Introduction of the Theory of Stability; Wolters-Noordhoff: Groningen, The Netherlands, 1970. [Google Scholar]
- Gu, K.Q.; Chen, J.; Kharitonov, V.L. Stability of Time-Delay Systems; Springer Science & Business Media: Birkhäuser Boston, MA, USA, 2003. [Google Scholar]
- Merkin, D.R. Introduction of the Theory of Stability; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Medvedeva, I.V.; Zhabko, A.P. Synthesis of Razumikhin and Lyapunov–Krasovskii approaches to stability analysis of time-delay systems. Automatica 2015, 51, 372–377. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, Q.L.; Seuret, A.; Gouaisbaut, F.; He, Y. Overview of recent advances in stability of linear systems with time-varying delays. IET Control Theory Appl. 2019, 13, 1–16. [Google Scholar] [CrossRef]
- Park, M.J.; Kwon, O.M.; Ryu, J.H. Generalized integral inequality: Application to time-delay systems. Appl. Math. Lett. 2018, 77, 6–12. [Google Scholar] [CrossRef]
- Zeng, H.B.; Lin, H.C.; He, Y.; Teo, K.L.; Wang, W. Hierarchical stability conditions for time-varying delay systems via an extended reciprocally convex quadratic inequality. J. Frankl. Inst. Eng. Appl. Math. 2020, 357, 9930–9941. [Google Scholar] [CrossRef]
- Xu, S.Y.; Lam, J. A survey of linear matrix inequality techniques in stability analysis of delay systems. Int. J. Syst. Sci. 2008, 39, 1095–1113. [Google Scholar] [CrossRef]
- Zhang, C.K.; He, Y.; Jiang, L.; Wu, M.; Zeng, H.B. Stability analysis of systems with time-varying delay via relaxed integral inequalities. Syst. Control Lett. 2016, 92, 52–61. [Google Scholar] [CrossRef]
- He, Y.; Wang, Q.G.; Lin, C.; Wu, M. Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems. Int. J. Robust Nonlinear Control 2005, 15, 923–933. [Google Scholar] [CrossRef]
- Sun, J.; Liu, G.P.; Chen, J.; Rees, D. Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica 2016, 92, 52–61. [Google Scholar] [CrossRef]
- Kwon, O.M.; Park, M.J.; Park, J.H.; Lee, S.M.; Cha, E.J. Improved results on stability of linear systems with time-varying delays via wirtinger-based integral inequality. J. Frankl. Inst. Eng. Appl. Math. 2014, 351, 5386–5398. [Google Scholar] [CrossRef]
- Qian, W.; Li, T.; Cong, S.; Fei, S.M. Stability analysis for interval time-varying delay systems based on time-varying bound integral method. J. Frankl. Inst. Eng. Appl. Math. 2014, 351, 4892–4903. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, M.J.; Kwon, O.M.; Choi, S.G. Less conservative stability criteria for general neural networks through novel delay-dependent functional. Appl. Math. Comput. 2022, 420, 126886. [Google Scholar] [CrossRef]
- Zhao, X.; Lin, C.; Chen, B.; Wang, Q.G. Stability analysis for linear time-delay systems using new inequality based on the second-order derivative. J. Frankl. Inst. Eng. Appl. Math. 2019, 356, 8770–8784. [Google Scholar] [CrossRef]
- Gu, K.Q. An integral inequality in the stability problem of time-delay systems. In Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 12–15 December 2000; pp. 2805–2810. [Google Scholar]
- Seuret, A.; Gouaisbaut, F. Wirtinger-based integral inequality: Application to time-delay systems. Automatica 2013, 49, 2860–2866. [Google Scholar] [CrossRef]
- Gu, K.Q. A further refinement of discretized Lyapunov functional method for the stability of time-delay systems. Int. J. Control 2001, 74, 967–976. [Google Scholar] [CrossRef]
- Park, M.J.; Kwon, O.M.; Park, J.H.; Lee, S.M.; Cha, E.J. Stability of time-delay systems via Wirtinger-based double integral inequality. Automatica 2015, 55, 204–208. [Google Scholar] [CrossRef]
- Park, P.G.; Lee, W.I.; Lee, S.Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J. Frankl. Inst. Eng. Appl. Math. 2015, 352, 1378–1396. [Google Scholar] [CrossRef]
- Seuret, A.; Gouaisbaut, F. Stability of linear systems with time-varying delays using bessel-legendre inequalities. IEEE Trans. Autom. Control 2018, 63, 225–232. [Google Scholar] [CrossRef]
- Zeng, H.B.; Liu, X.G.; Wang, W. A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems. Appl. Math. Comput. 2019, 354, 1–8. [Google Scholar] [CrossRef]
- Park, P.G.; Ko, J.W.; Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011, 47, 235–238. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, Q.L.; Seuret, A.; Gouaisbaut, F. An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay. Automatica 2017, 84, 221–226. [Google Scholar] [CrossRef]
- Seuret, A.; Liu, K.; Gouaisbaut, F. Generalized reciprocally convex combination lemmas and its application to time-delay systems. Automatica 2017, 84, 221–226. [Google Scholar] [CrossRef]
- Zhang, R.M.; Zeng, D.Q.; Park, J.H.; Zhong, S.M.; Liu, Y.J.; Zhou, X. New approaches to stability analysis for time-varying delay systems. J. Frankl. Inst. Eng. Appl. Math. 2019, 356, 4174–4189. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, P.; Jeong, C. Robust h stabilisation of networked control systems with packet analyser. IET Control Theory Appl. 2019, 356, 4174–4189. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, W.I.; Park, P. Improved stability criteria for linear systems with interval time-varying delays: Generalized zero equalities approach. Appl. Math. Comput. 2017, 292, 336–348. [Google Scholar] [CrossRef]
- Kwon, O.M.; Lee, S.H.; Park, M.J.; Lee, S.M. Augmented zero equality approach to stability for linear systems with time-varying delay. Appl. Math. Comput. 2020, 381, 125329. [Google Scholar] [CrossRef]
- Li, Z.C.; Yan, H.C.; Zhang, H.; Zhan, X.S.; Huang, C.Z. Improved inequality-based functions approach for stability analysis of time delay system. Automatica 2019, 108, 108416. [Google Scholar] [CrossRef]
- Li, Z.C.; Yan, H.C.; Zhang, H.; Peng, Y.; Park, J.H.; He, Y. Stability analysis of linear systems with time-varying delay via intermediate polynomial-based functions. Automatica 2020, 113, 108756. [Google Scholar] [CrossRef]
- Zhang, C.K.; Long, F.; He, Y.; Yao, W.; Jiang, L.; Wu, M. A relaxed quadratic function negative-determination lemma and its application to time-delay systems. Automatica 2020, 113, 108764. [Google Scholar] [CrossRef]
- Sheng, Z.L.; Lin, C.; Chen, B.; Wang, Q.G. Asymmetric Lyapunov-Krasovskii functional method on stability of time-delay systems. Int. J. Robust Nonlinear Control 2021, 31, 2847–2854. [Google Scholar] [CrossRef]
- De Oliveira, M.C.; Skelton, R.E. Stability tests for constrained linear systems. In Perspectives in Robust Control; Springer: London, UK, 2007; pp. 1–10. [Google Scholar]
- Liu, Y.; Hu, L.S.; Shi, P. A novel approach on stabilization for linear systems with time-varying input delay. Appl. Math. Comput. 2012, 218, 5937–5947. [Google Scholar] [CrossRef]
- Lee, C.S.; Leitmann, G. Continuous feedback guaranteeing uniform ultimate boundedness for uncertain linear delay systems—An application to river pollution-control. Comput. Math. Appl. 1988, 16, 929–938. [Google Scholar] [CrossRef]
- Aranda-Escolástico, E.; Guinaldo, M.; Gordillo, F.; Dormido, S. A novel approach to periodic event-triggered control: Design and application to the inverted pendulum. ISA Trans. 2016, 65, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Seuret, A.; Xia, Y. Stability analysis of systems with time-varying delays via the second-order bessel-legendre inequality. Automatica 2017, 76, 138–142. [Google Scholar] [CrossRef]
- Ren, Z.; Tian, J.K. Stability Analysis of Systems with Interval Time-Varying Delays via a New Integral Inequality. Complexity 2020, 2020, 2854293. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.H.; Park, P.G. A generalized multiple-integral inequality based on free matrices: Application to stability analysis of time-varying delay systems. Appl. Math. Comput. 2022, 430, 127288. [Google Scholar] [CrossRef]
- Zhai, Z.; Yan, H.; Chen, S.; Li, Z.; Wang, M. Hierarchical stability conditions for linear systems with interval time-varying delay. J. Frankl. Inst. 2024, 361, 1403–1415. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
[14] | 4.1935 | 4.4932 | 4.3979 | 4.1978 | 5.0275 |
[38] | 4.4045 | 4.5729 | 4.5406 | 4.2367 | 5.0440 |
[3] | 4.7561 | 4.7746 | 4.7931 | 4.7567 | 5.1372 |
Corollary 1 | 4.7577 | 4.7715 | 4.7634 | 4.7273 | 5.1373 |
Theorem 1 | 4.7952 | 4.8132 | 4.8110 | 4.7850 | 5.1511 |
Theorem 2 | 4.7951 | 4.8132 | 4.8109 | 4.7849 | 5.1500 |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
[14] | 2.3058 | 2.5663 | 3.3408 | 4.1690 | 5.0275 |
[38] | 2.3513 | 2.6987 | 3.4186 | 4.2097 | 5.0440 |
[3] | 2.4904 | 2.7994 | 3.4977 | 4.2939 | 5.1372 |
Corollary 1 | 2.4752 | 2.8111 | 3.4997 | 4.2946 | 5.1373 |
Theorem 1 | 2.5739 | 2.9247 | 3.5561 | 4.3134 | 5.1412 |
Theorem 2 | 2.5739 | 2.9247 | 3.5593 | 4.3133 | 5.1406 |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
[3] | 5.1893 | 6.0899 | 7.0461 | 8.0461 | 9.0461 |
Corollary 1 | 3.8906 | 4.8426 | 5.8413 | 6.8413 | 7.8413 |
Theorem 1 | 5.4731 | 6.2440 | 7.1456 | 8.0755 | 9.0564 |
Theorem 2 | 5.6896 | 6.3537 | 7.1932 | 8.0908 | 9.0578 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-H.; Kim, Y.-J.; Lee, S.-H.; Kwon, O.-M. Enhancing Stability Criteria for Linear Systems with Interval Time-Varying Delays via an Augmented Lyapunov–Krasovskii Functional. Mathematics 2024, 12, 2241. https://doi.org/10.3390/math12142241
Lee D-H, Kim Y-J, Lee S-H, Kwon O-M. Enhancing Stability Criteria for Linear Systems with Interval Time-Varying Delays via an Augmented Lyapunov–Krasovskii Functional. Mathematics. 2024; 12(14):2241. https://doi.org/10.3390/math12142241
Chicago/Turabian StyleLee, Dong-Hoon, Yeong-Jae Kim, Seung-Hoon Lee, and Oh-Min Kwon. 2024. "Enhancing Stability Criteria for Linear Systems with Interval Time-Varying Delays via an Augmented Lyapunov–Krasovskii Functional" Mathematics 12, no. 14: 2241. https://doi.org/10.3390/math12142241
APA StyleLee, D.-H., Kim, Y.-J., Lee, S.-H., & Kwon, O.-M. (2024). Enhancing Stability Criteria for Linear Systems with Interval Time-Varying Delays via an Augmented Lyapunov–Krasovskii Functional. Mathematics, 12(14), 2241. https://doi.org/10.3390/math12142241