Bayesian Control Chart for Number of Defects in Production Quality Control
Abstract
:1. Introduction
2. Predictive Density of C-Chart
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Montgomery, D.C. Introduction to Statistical Quality Control, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Koutras, M.V.; Bersimis, S.; Maravelakis, P.E. Statistical Process Control using Shewhart Control Charts with Supplementary Runs Rules. Methodol. Comput. Appl. Probab. 2007, 9, 207–224. [Google Scholar] [CrossRef]
- Chakraborti, S.; Human, S.W. Properties and performance of the c-chart for attributes data. J. Appl. Stat. 2008, 35, 89–100. [Google Scholar] [CrossRef]
- Raubenheimer, L.; Merwe, A.V. Bayesian Control Chart for Nonconformities. Qual. Reliab. Engng. Int. 2015, 31, 1359–1366. [Google Scholar] [CrossRef]
- Bayarri, M.J.; Garcia-Donato, G. A Byesian sequential look at u-control charts. Technometrics 2005, 47, 142–151. [Google Scholar] [CrossRef]
- Calabrese, J.M. Bayesian process control for attributes. Manag. Sci. 1995, 41, 637–645. [Google Scholar] [CrossRef]
- Taylor, H.M. A Markov quality control process subject to partial observation. Ann. Math. Stat. 1965, 36, 1677–1694. [Google Scholar] [CrossRef]
- Taylor, H.M. Statistical control of a Gaussian process. Technometrics 1969, 9, 29–41. [Google Scholar] [CrossRef]
- Menzefricke, U. Control charts for the variance and coefficient of variation based on their predictive distribution. Commun. Stat. Theory Methods 2010, 39, 2930–2941. [Google Scholar] [CrossRef]
- Menzefricke, U. On the evaluation of control chart limits based on predictive distributions. Commun. Stat. Theory Methods 2002, 31, 1423–1440. [Google Scholar] [CrossRef]
- Menzefricke, U. Combined Exponentially Weighted Moving Average Charts for the Mean and Variance Based on the Predictive Distribution. Commun. Stat. Theory Methods 2013, 42, 4003–4016. [Google Scholar] [CrossRef]
- Saghir, A. Phase-I design scheme for x-chart based on posterior distribution. Commun. Stat. Theory Methods 2015, 44, 644–655. [Google Scholar] [CrossRef]
- Saghir, A. Phase-I design structure of Bayesian variance chart. Cogent Math. 2016, 3, 1172403. [Google Scholar] [CrossRef]
- Abirami, S.; Vijayasankar, N.; Sasikala, S. Bayesian inference in control charts using normal prior. Int. J. Stat. Appl. Math. 2023, 8, 22–25. [Google Scholar] [CrossRef]
- Aunali, A.S.; Venkatesan, D. Bayesian Approach in Control Charts Using Exponential Prior. Sci. Tech. Dev. 2019, 8, 148–152. [Google Scholar]
- Aunali, A.S.; Venkatesan, D. Bayesian Control Charts Using Uniform Prior. Sci. J. Inform. Comput. Sci. 2019, 9, 295–301. [Google Scholar]
- Lin, C.-H.; Lu, M.-C.; Yang, S.-F.; Lee, M.-Y. A Bayesian Control Chart for Monitoring Process Variance. Appl. Sci. 2021, 11, 2729. [Google Scholar] [CrossRef]
- Wang, Y.; Khan, I.; Noor-ul-Amin, M.; Javaid, A.; Khan, D.M.; Alshanbari, H.M. Performance of Bayesian EWMA control chart with measurement error under ranked set sampling schemes with application in industrial engineering. Sci. Rep. 2013, 13, 14042. [Google Scholar] [CrossRef]
- Khan, I.; Noor-ul-Amin, M.; Khalifa, N.T.; Arshad, A. EWMA control chart using Bayesian approach under paired ranked set sampling schemes: An application to reliability engineering. AIMS Math. 2023, 8, 20324–20350. [Google Scholar] [CrossRef]
- Alshahrani, F.; Almanjahie, I.M.; Khan, M.; Anwar, S.M.; Rasheed, Z.; Cheema, A.N. On Designing of Bayesian Shewhart-Type Control Charts for Maxwell Distributed Processes with Application of Boring Machine. Mathematics 2023, 11, 1126. [Google Scholar] [CrossRef]
- Hafeez, W.; Aziz, N.; Zain, Z.; Kamarudin, N.A. Bayesian Group Chain Sampling Plan for Poisson Distribution with Gamma Prior. Comput. Mater. Contin. 2022, 70, 3891–3902. [Google Scholar] [CrossRef]
- Suresh, K.K.; Sangeetha, V. Construction and selection of Bayesian chain sampling plan (BChSP-1) using quality regions. Mod. Appl. Sci. 2011, 5, 226–234. [Google Scholar] [CrossRef]
- Supharakonsakun, Y. Bayesian Approaches for Poisson Distribution Parameter Estimation. Emerg. Sci. J. 2021, 5, 755–774. [Google Scholar] [CrossRef]
- Song, J.J.; Kim, J. Bayesian estimation of rare sensitive attribute. Commun. Stat. Simul. Comput. 2017, 46, 4154–4160. [Google Scholar] [CrossRef]
- Geisser, S. Predictive Inference: An Introduction; Chapman & Hall: London, UK, 1993. [Google Scholar]
λ | F | BJ | BG | F | BJ | BG | F | BJ | BG |
---|---|---|---|---|---|---|---|---|---|
n = 5 | n = 10 | n = 15 | |||||||
1 | 2.5213 | 2.4565 | 2.6787 | 2.5927 | 2.5489 | 2.6723 | 2.6169 | 2.5894 | 2.6679 |
2 | 6.6119 | 6.3843 | 7.0773 | 6.8370 | 6.6884 | 7.0620 | 6.8810 | 6.7807 | 7.0383 |
3 | 16.6544 | 15.9202 | 18.2051 | 17.3270 | 16.8506 | 18.1016 | 17.4702 | 17.1052 | 18.0182 |
4 | 39.2982 | 38.0653 | 44.8697 | 40.8478 | 39.7670 | 44.1196 | 41.4880 | 40.5102 | 43.6796 |
5 | 87.7513 | 86.3532 | 105.0799 | 87.7049 | 87.2830 | 99.4738 | 87.9545 | 87.6690 | 96.5618 |
8 | 454.9500 | 494.6330 | 599.6453 | 383.5887 | 480.5528 | 556.3826 | 330.5614 | 415.8965 | 475.5315 |
10 | 398.9501 | 382.9649 | 432.2839 | 382.6195 | 409.4388 | 448.5112 | 354.0101 | 397.3419 | 430.3330 |
15 | 323.9318 | 284.3721 | 294.5420 | 343.5854 | 330.6152 | 339.2149 | 340.5875 | 340.7814 | 348.3136 |
20 | 303.0356 | 258.3695 | 258.3695 | 330.1730 | 305.3085 | 304.7872 | 340.5875 | 320.0669 | 315.7853 |
50 | 257.3339 | 209.1611 | 189.9394 | 294.7512 | 257.1939 | 237.9175 | 312.0903 | 280.9855 | 264.5450 |
n = 20 | n = 25 | n = 30 | |||||||
1 | 2.6267 | 2.6061 | 2.6647 | 2.6348 | 2.6189 | 2.6638 | 2.6367 | 2.6240 | 2.6617 |
2 | 6.9377 | 6.8562 | 7.0468 | 6.9360 | 6.8745 | 7.0312 | 6.9612 | 6.9132 | 7.0357 |
3 | 17.6675 | 17.3812 | 18.0483 | 17.6565 | 17.4120 | 18.0166 | 17.7847 | 17.5371 | 18.0392 |
4 | 41.8971 | 41.1831 | 43.6275 | 42.2358 | 41.4934 | 43.4372 | 42.1687 | 41.5009 | 43.2472 |
5 | 87.5315 | 87.4401 | 94.6250 | 87.5459 | 87.4412 | 92.9462 | 88.0608 | 88.0290 | 92.9611 |
8 | 320.0732 | 391.8287 | 436.8171 | 302.7570 | 364.3714 | 402.3618 | 293.0335 | 344.1186 | 374.0170 |
10 | 353.4235 | 388.8555 | 416.8962 | 344.5182 | 379.2704 | 402.8741 | 336.8641 | 367.9865 | 386.4273 |
15 | 338.9864 | 343.0262 | 351.6103 | 338.5060 | 344.1869 | 350.5746 | 334.8327 | 344.5416 | 346.9817 |
20 | 340.2283 | 331.0582 | 332.7987 | 337.3543 | 333.3624 | 331.6497 | 335.0866 | 334.1162 | 332.5582 |
50 | 321.2072 | 295.6685 | 280.1818 | 326.9583 | 304.7529 | 292.0903 | 331.7540 | 311.6192 | 298.6964 |
n = 50 | n = 100 | n = 200 | |||||||
1 | 2.6393 | 2.6329 | 2.6572 | 2.6398 | 2.6401 | 2.6527 | 2.6390 | 2.6394 | 2.6485 |
2 | 6.9886 | 6.9554 | 7.0286 | 7.0307 | 6.9939 | 7.0339 | 7.0820 | 7.0363 | 7.0558 |
3 | 17.8675 | 17.7380 | 18.0204 | 17.9925 | 17.8715 | 18.0304 | 18.1618 | 17.9982 | 18.0830 |
4 | 42.4864 | 42.1223 | 43.1579 | 42.6179 | 42.5305 | 43.1355 | 42.5747 | 42.5554 | 42.9669 |
5 | 88.7302 | 88.7932 | 91.9146 | 88.1357 | 88.1357 | 90.4300 | 86.1348 | 88.0959 | 89.0128 |
8 | 277.0461 | 306.9855 | 324.1538 | 261.3801 | 277.1624 | 284.7046 | 252.8359 | 263.1057 | 266.9809 |
10 | 322.4659 | 344.2188 | 356.2091 | 307.6547 | 322.7460 | 331.3688 | 294.3781 | 308.2915 | 310.5624 |
15 | 332.9095 | 340.9520 | 342.4873 | 324.5143 | 331.8624 | 334.5469 | 314.0639 | 314.0639 | 325.2001 |
20 | 334.6021 | 337.9960 | 336.2559 | 335.1888 | 335.9407 | 336.0102 | 333.4542 | 333.2912 | 332.8310 |
50 | 338.8756 | 327.2756 | 317.3416 | 345.4461 | 338.7309 | 334.0351 | 348.5869 | 344.8088 | 341.6380 |
λ | F | BJ | BG | F | BJ | BG | F | BJ | BG |
---|---|---|---|---|---|---|---|---|---|
n = 5 | n = 10 | n = 15 | |||||||
1 | 0.39662270 | 0.40708550 | 0.40708550 | 0.38569400 | 0.39232380 | 0.37421000 | 0.38212840 | 0.38618380 | 0.37482830 |
2 | 0.15124300 | 0.15663420 | 0.14129660 | 0.14626240 | 0.14951160 | 0.14160280 | 0.14532670 | 0.14747760 | 0.14208050 |
3 | 0.06004426 | 0.06281317 | 0.05492979 | 0.05771337 | 0.05934518 | 0.05524374 | 0.05724033 | 0.05846155 | 0.05549938 |
4 | 0.02544645 | 0.02627064 | 0.02228677 | 0.02448115 | 0.02514650 | 0.02266568 | 0.02410337 | 0.02468512 | 0.02289396 |
5 | 0.01139585 | 0.01158035 | 0.00951657 | 0.01140187 | 0.01145698 | 0.01005290 | 0.01136951 | 0.01136951 | 0.01035606 |
8 | 0.00219804 | 0.00202170 | 0.00166765 | 0.00260696 | 0.00208094 | 0.00179732 | 0.00302516 | 0.00240444 | 0.00210291 |
10 | 0.00250658 | 0.00261121 | 0.00231329 | 0.00261356 | 0.00244237 | 0.00222960 | 0.00282478 | 0.00251673 | 0.00232378 |
15 | 0.00308707 | 0.00351652 | 0.00339510 | 0.00291048 | 0.00302467 | 0.00294798 | 0.00293610 | 0.00293443 | 0.00287098 |
20 | 0.00329994 | 0.00387043 | 0.00388933 | 0.00302872 | 0.00327538 | 0.00328098 | 0.00300033 | 0.00312435 | 0.00316671 |
50 | 0.00388600 | 0.00478100 | 0.00526484 | 0.00339269 | 0.00388812 | 0.00420314 | 0.00320420 | 0.00355890 | 0.00378008 |
n = 20 | n = 25 | n = 30 | |||||||
1 | 0.38070290 | 0.38371150 | 0.37527970 | 0.37953070 | 0.38184120 | 0.37540080 | 0.37926550 | 0.38109870 | 0.37569620 |
2 | 0.14414100 | 0.14585320 | 0.14190820 | 0.14417550 | 0.14546450 | 0.14222320 | 0.14365370 | 0.14464900 | 0.14213290 |
3 | 0.05660097 | 0.05753329 | 0.05540701 | 0.05663632 | 0.05743179 | 0.05550451 | 0.05622827 | 0.05543484 | 0.05543484 |
4 | 0.02386803 | 0.02428183 | 0.02292132 | 0.02367660 | 0.02410020 | 0.02302176 | 0.02371426 | 0.02409589 | 0.02312288 |
5 | 0.01142446 | 0.01143640 | 0.01056803 | 0.01142258 | 0.01143625 | 0.01075891 | 0.01135580 | 0.01135989 | 0.01075718 |
8 | 0.00312429 | 0.00255214 | 0.00228929 | 0.00330298 | 0.00274445 | 0.00248533 | 0.00341258 | 0.00290598 | 0.00267368 |
10 | 0.00282947 | 0.00257165 | 0.00239868 | 0.00290260 | 0.00263664 | 0.00248217 | 0.00296856 | 0.00271749 | 0.00258781 |
15 | 0.00294997 | 0.00291523 | 0.00284406 | 0.00295416 | 0.00290540 | 0.00285246 | 0.00298657 | 0.00290241 | 0.00258781 |
20 | 0.00293920 | 0.00302062 | 0.00300482 | 0.00296424 | 0.00299974 | 0.00301523 | 0.00298430 | 0.00299297 | 0.00300699 |
50 | 0.00311326 | 0.00338217 | 0.00356911 | 0.00305849 | 0.00328135 | 0.00342360 | 0.00301428 | 0.00320905 | 0.00334788 |
n = 50 | n = 100 | n = 200 | |||||||
1 | 0.37889310 | 0.37980500 | 0.37633970 | 0.37882120 | 0.37877600 | 0.37698020 | 0.37892750 | 0.37886810 | 0.37757490 |
2 | 0.14309070 | 0.14377280 | 0.14227490 | 0.14223350 | 0.14298200 | 0.14216920 | 0.14120300 | 0.14212070 | 0.14172810 |
3 | 0.05596745 | 0.05637619 | 0.05549266 | 0.05557858 | 0.05595490 | 0.05546201 | 0.05506071 | 0.05556127 | 0.05530066 |
4 | 0.02353694 | 0.02374041 | 0.02317074 | 0.02346430 | 0.02351255 | 0.02318279 | 0.02348811 | 0.02349877 | 0.02327374 |
5 | 0.01127012 | 0.01126212 | 0.01087967 | 0.01134614 | 0.01127120 | 0.01105828 | 0.01160971 | 0.01135127 | 0.01123434 |
8 | 0.00360951 | 0.00325748 | 0.00308496 | 0.00382585 | 0.00360799 | 0.00351241 | 0.00395513 | 0.00380075 | 0.00374559 |
10 | 0.00310110 | 0.00290513 | 0.00280734 | 0.00325040 | 0.00309841 | 0.00301779 | 0.00339699 | 0.00324368 | 0.00321997 |
15 | 0.00300382 | 0.00293296 | 0.00291982 | 0.00308153 | 0.00301330 | 0.00298912 | 0.00318407 | 0.00307384 | 0.00307503 |
20 | 0.00298863 | 0.00295861 | 0.00297393 | 0.00298339 | 0.00297672 | 0.00297610 | 0.00299891 | 0.00300038 | 0.00300453 |
50 | 0.00295094 | 0.00305553 | 0.00315118 | 0.00289481 | 0.00295220 | 0.00299370 | 0.00286873 | 0.00290016 | 0.00292708 |
λ | F | BJ | BG | F | BJ | BG | F | BJ | BG |
---|---|---|---|---|---|---|---|---|---|
n = 5 | n = 10 | n = 15 | |||||||
1 | 2.5233 | 2.4572 | 2.6748 | 2.5902 | 2.5443 | 2.6675 | 2.6174 | 2.5896 | 2.6643 |
2 | 6.6229 | 6.4023 | 7.0214 | 6.8260 | 6.6835 | 7.0203 | 6.8738 | 6.7870 | 7.0060 |
3 | 16.6449 | 16.6449 | 17.8280 | 17.3424 | 16.8308 | 17.9019 | 17.4687 | 17.1058 | 17.8753 |
4 | 39.3661 | 37.8868 | 43.1480 | 40.7582 | 39.8308 | 42.8859 | 41.6155 | 40.8729 | 43.0164 |
5 | 87.5318 | 86.5160 | 98.0466 | 87.5600 | 87.0566 | 94.7797 | 87.6750 | 87.7005 | 93.0653 |
8 | 456.9219 | 493.1376 | 518.5925 | 375.8899 | 468.6201 | 480.5386 | 332.8215 | 419.2790 | 426.7985 |
10 | 402.4407 | 387.8796 | 381.4358 | 378.7237 | 409.0835 | 396.0685 | 358.4815 | 398.2550 | 388.9642 |
15 | 326.0085 | 284.4770 | 258.4064 | 340.9400 | 329.3362 | 298.6948 | 338.5840 | 338.4772 | 315.4739 |
20 | 303.9213 | 259.1802 | 221.6345 | 329.7544 | 303.4682 | 269.3523 | 332.0111 | 318.7007 | 282.2210 |
50 | 256.3661 | 210.5426 | 140.2344 | 296.0692 | 258.2642 | 200.4727 | 313.9835 | 283.3336 | 233.0509 |
n = 20 | n = 25 | n = 30 | |||||||
1 | 2.6288 | 2.6068 | 2.6631 | 2.6336 | 2.6167 | 2.6599 | 2.6366 | 2.6248 | 2.6601 |
2 | 6.9355 | 6.8503 | 7.0232 | 6.9377 | 6.8787 | 7.0113 | 6.9631 | 6.9119 | 7.0211 |
3 | 17.6310 | 17.3377 | 17.9002 | 17.6617 | 17.3994 | 17.8630 | 17.7455 | 17.5314 | 17.9095 |
4 | 41.8540 | 41.0597 | 42.8223 | 42.1195 | 41.4906 | 42.8501 | 42.1345 | 41.5007 | 42.7617 |
5 | 87.8871 | 87.7707 | 92.3624 | 87.7346 | 87.7406 | 91.1625 | 87.6568 | 88.0440 | 90.7840 |
8 | 393.3209 | 393.3209 | 397.9287 | 302.4668 | 361.1734 | 367.9019 | 290.8101 | 342.4454 | 344.9910 |
10 | 356.7776 | 394.4178 | 384.6940 | 344.6354 | 380.6124 | 373.1827 | 332.6781 | 360.8223 | 359.1106 |
15 | 338.4139 | 343.7880 | 320.2326 | 339.4823 | 345.9631 | 327.5580 | 333.3335 | 340.9038 | 324.1026 |
20 | 337.3600 | 331.5635 | 301.3750 | 336.1248 | 332.8756 | 305.8301 | 334.6695 | 333.6483 | 310.6800 |
50 | 320.6388 | 294.8311 | 252.0554 | 326.8175 | 305.9600 | 267.2054 | 331.6683 | 312.3347 | 278.4506 |
n = 50 | n = 100 | n = 200 | |||||||
1 | 2.6381 | 2.6318 | 2.6549 | 2.6398 | 2.6397 | 2.6512 | 2.6390 | 2.6393 | 2.6482 |
2 | 6.9853 | 6.9522 | 7.0217 | 7.0317 | 6.9953 | 7.0317 | 7.0826 | 7.0395 | 7.0572 |
3 | 17.8699 | 17.7442 | 17.9680 | 17.9892 | 17.8775 | 17.9930 | 18.1734 | 18.0104 | 18.0739 |
4 | 42.5169 | 42.1612 | 42.8746 | 42.6079 | 42.4718 | 42.8995 | 42.6216 | 42.6172 | 42.8391 |
5 | 88.8421 | 88.5996 | 90.6512 | 88.1742 | 88.8398 | 89.8989 | 86.1159 | 87.9510 | 88.4350 |
8 | 276.7123 | 307.2505 | 311.8946 | 262.5758 | 278.5654 | 279.9313 | 251.6594 | 262.0512 | 263.2078 |
10 | 323.3059 | 345.7096 | 342.3620 | 309.8530 | 325.9426 | 323.4057 | 294.9882 | 308.7353 | 307.5628 |
15 | 333.8996 | 340.5693 | 329.5273 | 324.8547 | 332.6512 | 325.3336 | 314.2074 | 324.1764 | 321.4006 |
20 | 336.0491 | 337.7370 | 321.4377 | 334.4073 | 333.7946 | 326.4139 | 333.9665 | 334.1646 | 328.1677 |
50 | 338.8835 | 326.4732 | 302.0031 | 345.7355 | 339.9024 | 323.9124 | 349.7454 | 346.0734 | 337.4349 |
λ | F | BJ | BG | F | BJ | BG | F | BJ | BG |
---|---|---|---|---|---|---|---|---|---|
n = 5 | n = 10 | n = 15 | |||||||
1 | 0.39630460 | 0.40697220 | 0.37386390 | 0.38606500 | 0.39303320 | 0.37487780 | 0.38205250 | 0.38615420 | 0.37532930 |
2 | 0.15099010 | 0.15619350 | 0.14242240 | 0.14649910 | 0.14962180 | 0.14244380 | 0.14547910 | 0.14734040 | 0.14273460 |
3 | 0.06007845 | 0.06274271 | 0.05609142 | 0.05766229 | 0.05941489 | 0.05586000 | 0.05724533 | 0.05724533 | 0.05594302 |
4 | 0.02540255 | 0.02639445 | 0.02317604 | 0.02453494 | 0.02510619 | 0.02331767 | 0.02402952 | 0.02446612 | 0.02324695 |
5 | 0.01142442 | 0.01155856 | 0.01019923 | 0.01142074 | 0.01148678 | 0.01055079 | 0.01140576 | 0.01140244 | 0.01074515 |
8 | 0.00218856 | 0.00202783 | 0.00192830 | 0.00266035 | 0.00213393 | 0.00208100 | 0.00300461 | 0.00238505 | 0.00234303 |
10 | 0.00248484 | 0.00257812 | 0.00262167 | 0.00264045 | 0.00244449 | 0.00252482 | 0.00278955 | 0.00251095 | 0.00257093 |
15 | 0.00306741 | 0.00351522 | 0.00386987 | 0.00293307 | 0.00303641 | 0.00334790 | 0.00295348 | 0.00295441 | 0.00316983 |
20 | 0.00329033 | 0.00385832 | 0.00451193 | 0.00303256 | 0.00329524 | 0.00371261 | 0.00301195 | 0.00313774 | 0.00354332 |
50 | 0.00390067 | 0.00474963 | 0.00713092 | 0.00337759 | 0.00387201 | 0.00498821 | 0.00318488 | 0.00352941 | 0.00429091 |
n = 20 | n = 25 | n = 30 | |||||||
1 | 0.38039740 | 0.38361130 | 0.37550780 | 0.37970210 | 0.38215570 | 0.37596040 | 0.37928360 | 0.38097830 | 0.37592760 |
2 | 0.14418640 | 0.14597810 | 0.14238510 | 0.14413970 | 0.14537660 | 0.14262610 | 0.14361330 | 0.14467830 | 0.14242800 |
3 | 0.05671837 | 0.05767788 | 0.05586524 | 0.05661960 | 0.05747328 | 0.05598164 | 0.05635218 | 0.05704039 | 0.05583628 |
4 | 0.02389257 | 0.02435477 | 0.02335234 | 0.02374195 | 0.02410183 | 0.02333716 | 0.02373350 | 0.02409597 | 0.02409597 |
5 | 0.01137823 | 0.01139332 | 0.01082692 | 0.01139802 | 0.01139723 | 0.01096943 | 0.01140813 | 0.01135796 | 0.01101516 |
8 | 0.00313724 | 0.00254245 | 0.00251301 | 0.00330615 | 0.00276875 | 0.00271812 | 0.00343867 | 0.00292017 | 0.00289863 |
10 | 0.00280287 | 0.00253538 | 0.00259947 | 0.00290162 | 0.00262735 | 0.00267965 | 0.00300591 | 0.00277145 | 0.00278466 |
15 | 0.00295496 | 0.00290877 | 0.00312273 | 0.00294566 | 0.00289048 | 0.00305289 | 0.00300000 | 0.00293338 | 0.00308544 |
20 | 0.00296419 | 0.00301601 | 0.00331813 | 0.00297509 | 0.00300413 | 0.00326979 | 0.00298802 | 0.00299717 | 0.00321869 |
50 | 0.00311877 | 0.00339177 | 0.00396738 | 0.00305981 | 0.00326840 | 0.00374244 | 0.00301506 | 0.00320169 | 0.00359130 |
n = 50 | n = 100 | n = 200 | |||||||
1 | 0.37906670 | 0.37996640 | 0.37666900 | 0.37881600 | 0.37883430 | 0.37718550 | 0.37893600 | 0.37889080 | 0.37760990 |
2 | 0.14315800 | 0.14384040 | 0.14241610 | 0.14221330 | 0.14295410 | 0.14221220 | 0.14119100 | 0.14205480 | 0.14170010 |
3 | 0.05595995 | 0.05635656 | 0.05565437 | 0.05558894 | 0.05593614 | 0.05557725 | 0.05502545 | 0.05552335 | 0.05552335 |
4 | 0.02352006 | 0.02352006 | 0.02332383 | 0.02346981 | 0.02354502 | 0.02331030 | 0.02346227 | 0.02346469 | 0.02334315 |
5 | 0.01125592 | 0.01128673 | 0.01103129 | 0.01134119 | 0.01125622 | 0.01112361 | 0.01161226 | 0.01136997 | 0.01130774 |
8 | 0.00361386 | 0.00325467 | 0.00320621 | 0.00380842 | 0.00358982 | 0.00357231 | 0.00397363 | 0.00381605 | 0.00379928 |
10 | 0.00309305 | 0.00289260 | 0.00292089 | 0.00322734 | 0.00306803 | 0.00309209 | 0.00338997 | 0.00323902 | 0.00325137 |
15 | 0.00299491 | 0.00293626 | 0.00303465 | 0.00307830 | 0.00300615 | 0.00307377 | 0.00318261 | 0.00308474 | 0.00311138 |
20 | 0.00297576 | 0.00296088 | 0.00311102 | 0.00299037 | 0.00299585 | 0.00306360 | 0.00299431 | 0.00299254 | 0.00304722 |
50 | 0.00295087 | 0.00306304 | 0.00331122 | 0.00289239 | 0.00294202 | 0.00308726 | 0.00285922 | 0.00288956 | 0.00296354 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supharakonsakun, Y. Bayesian Control Chart for Number of Defects in Production Quality Control. Mathematics 2024, 12, 1903. https://doi.org/10.3390/math12121903
Supharakonsakun Y. Bayesian Control Chart for Number of Defects in Production Quality Control. Mathematics. 2024; 12(12):1903. https://doi.org/10.3390/math12121903
Chicago/Turabian StyleSupharakonsakun, Yadpirun. 2024. "Bayesian Control Chart for Number of Defects in Production Quality Control" Mathematics 12, no. 12: 1903. https://doi.org/10.3390/math12121903
APA StyleSupharakonsakun, Y. (2024). Bayesian Control Chart for Number of Defects in Production Quality Control. Mathematics, 12(12), 1903. https://doi.org/10.3390/math12121903