Network Synchronization via Pinning Control from an Attacker-Defender Game Perspective
Abstract
:1. Introduction
- We propose an attacker-defender game to analyse network synchronization via pinning control in the confrontation scenario.
- Through a series of experiments, the payoff matrix of the game and equilibrium are explored.
- The correctness of the proposed attacker-defender game is verified by simulation based on the specific network synchronization dynamics.
- The performance of the proposed attacker-defender game on different network structures is analyzed.
2. Model
2.1. Strategy
2.2. Payoff Matrix
3. Experimental Results and Analysis
Sensitivity Analysis on Different Network Structures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance of complex networks. Nature 2000, 406, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Gross, T.; Blasius, B. Adaptive coevolutionary networks: A review. J. R. Soc. Interface 2008, 5, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Cimini, G.; Squartini, T.; Saracco, F.; Garlaschelli, D.; Gabrielli, A.; Caldarelli, G. The statistical physics of real-world networks. Nat. Rev. Phys. 2019, 1, 58–71. [Google Scholar] [CrossRef]
- De Domenico, M. More is different in real-world multilayer networks. Nat. Phys. 2023, 19, 1247–1262. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; An, T.; Jin, X.; Wang, C.; Zhao, J.; Wang, Z. Effect of vaccine efficacy on vaccination behavior with adaptive perception. Appl. Math. Comput. 2024, 469, 128543. [Google Scholar] [CrossRef]
- Ying, X.; Wang, J.; Jin, X.; Wang, C.; Zhang, Z.; Wang, Z. Temporal-spatial perception adjustment to fitness enhances the cooperation in the spatial prisoner’s dilemma game. Front. Phys. 2023, 11, 1200506. [Google Scholar] [CrossRef]
- Chen, J.; Luo, K.; Tang, C.; Zhang, Z.; Li, X. Optimizing polynomial-time solutions to a network weighted vertex cover game. IEEE/CAA J. Autom. Sin. 2022, 10, 512–523. [Google Scholar] [CrossRef]
- Tang, C.; Yang, B.; Xie, X.; Chen, G.; Al-Qaness, M.A.; Liu, Y. An Incentive Mechanism for Federated Learning: A Continuous Zero-Determinant Strategy Approach. IEEE/CAA J. Autom. Sin. 2024, 11, 88–102. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Jin, X.; Ma, L.; Chen, Y.; Wang, C.; Zhao, J.; An, T. Subsidy policy with punishment mechanism can promote voluntary vaccination behaviors in structured populations. Chaos Solitons Fractals 2023, 174, 113863. [Google Scholar] [CrossRef]
- Zhang, H.; An, T.; Yan, P.; Hu, K.; An, J.; Shi, L.; Zhao, J.; Wang, J. Exploring cooperative evolution with tunable payoff’s loners using reinforcement learning. Chaos Solitons Fractals 2024, 178, 114358. [Google Scholar] [CrossRef]
- Klinshov, V.V.; Kovalchuk, A.V.; Soloviev, I.A.; Maslennikov, O.V.; Franović, I.; Perc, M. Extending dynamic memory of spiking neuron networks. Chaos Solitons Fractals 2024, 182, 114850. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Wang, J.; Lv, H. An optical flow estimation method based on multiscale anisotropic convolution. Appl. Intell. 2024, 54, 398–413. [Google Scholar] [CrossRef]
- Mahmoud, G.M.; Farghaly, A.A.; Abed-Elhameed, T.M.; Aly, S.A.; Arafa, A.A. Dynamics of distributed-order hyperchaotic complex van der Pol oscillators and their synchronization and control. Eur. Phys. J. Plus 2020, 135, 32. [Google Scholar] [CrossRef]
- Della Rossa, F.; Pecora, L.; Blaha, K.; Shirin, A.; Klickstein, I.; Sorrentino, F. Symmetries and cluster synchronization in multilayer networks. Nat. Commun. 2020, 11, 3179. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Chen, G. Pinning control of scale-free dynamical networks. Phys. A Stat. Mech. Its Appl. 2002, 310, 521–531. [Google Scholar] [CrossRef]
- Hong, H.; Choi, M.Y.; Kim, B.J. Synchronization on small-world networks. Phys. Rev. E 2002, 65, 026139. [Google Scholar] [CrossRef] [PubMed]
- Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C. Synchronization in complex networks. Phys. Rep. 2008, 469, 93–153. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Chen, G. Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 2074–2087. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, J.a.; Lü, J. Pinning adaptive synchronization of a general complex dynamical network. Automatica 2008, 44, 996–1003. [Google Scholar] [CrossRef]
- Yu, W.; Chen, G.; Lu, J.; Kurths, J. Synchronization via pinning control on general complex networks. SIAM J. Control Optim. 2013, 51, 1395–1416. [Google Scholar] [CrossRef]
- Wang, L.; Guo, Y.; Wang, Y.; Fan, H.; Wang, X. Pinning control of cluster synchronization in regular networks. Phys. Rev. Res. 2020, 2, 023084. [Google Scholar] [CrossRef]
- Liu, H.; Xu, X.; Lu, J.A.; Chen, G.; Zeng, Z. Optimizing pinning control of complex dynamical networks based on spectral properties of grounded Laplacian matrices. IEEE Trans. Syst. Man Cybern. Syst. 2018, 51, 786–796. [Google Scholar] [CrossRef]
- Yu, W.; Chen, G.; Lü, J. On pinning synchronization of complex dynamical networks. Automatica 2009, 45, 429–435. [Google Scholar] [CrossRef]
- Hassani, H.; Razavi-Far, R.; Saif, M.; Chiclana, F.; Krejcar, O.; Herrera-Viedma, E. Classical dynamic consensus and opinion dynamics models: A survey of recent trends and methodologies. Inf. Fusion 2022, 88, 22–40. [Google Scholar] [CrossRef]
- Lin, J.C.; Chen, J.M.; Chen, C.C.; Chien, Y.S. A game theoretic approach to decision and analysis in strategies of attack and defense. In Proceedings of the 2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement, Shanghai, China, 8–10 July 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 75–81. [Google Scholar]
- La, Q.D.; Quek, T.Q.; Lee, J.; Jin, S.; Zhu, H. Deceptive attack and defense game in honeypot-enabled networks for the internet of things. IEEE Internet Things J. 2016, 3, 1025–1035. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, Y.; Li, Y.; Wu, J. Which targets to protect in critical infrastructures-a game-theoretic solution from a network science perspective. IEEE Access 2018, 6, 56214–56221. [Google Scholar] [CrossRef]
- Li, Y.P.; Tan, S.Y.; Deng, Y.; Wu, J. Attacker-defender game from a network science perspective. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, R.; Chen, L.; Wang, Z.; Hu, L. An Adversarial Dynamic Game to Controlling Information Diffusion under Typical Strategies on Online Social Networks. Front. Phys. 2022, 10, 934741. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Jin, X.; Ding, H.; Cui, G.; Yu, L. Evolutionary dynamics of the interdependent security games on complex network. Appl. Math. Comput. 2021, 399, 126051. [Google Scholar] [CrossRef]
- Leskovec, J.; Lang, K.J.; Dasgupta, A.; Mahoney, M.W. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Math. 2009, 6, 29–123. [Google Scholar] [CrossRef]
- Morone, F.; Makse, H.A. Influence maximization in complex networks through optimal percolation. Nature 2015, 524, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 2015, 87, 925. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Zhou, C.; Small, M.; Wang, B. Hub nodes inhibit the outbreak of epidemic under voluntary vaccination. New J. Phys. 2010, 12, 023015. [Google Scholar] [CrossRef]
- Chen, G.; Ueta, T. Yet another chaotic attractor. Int. J. Bifurc. Chaos 1999, 9, 1465–1466. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, P.; Zhang, H.; Zhang, H.; Yang, C.; An, T. Network Synchronization via Pinning Control from an Attacker-Defender Game Perspective. Mathematics 2024, 12, 1841. https://doi.org/10.3390/math12121841
Pei P, Zhang H, Zhang H, Yang C, An T. Network Synchronization via Pinning Control from an Attacker-Defender Game Perspective. Mathematics. 2024; 12(12):1841. https://doi.org/10.3390/math12121841
Chicago/Turabian StylePei, Ping, Haihan Zhang, Huizhen Zhang, Chen Yang, and Tianbo An. 2024. "Network Synchronization via Pinning Control from an Attacker-Defender Game Perspective" Mathematics 12, no. 12: 1841. https://doi.org/10.3390/math12121841
APA StylePei, P., Zhang, H., Zhang, H., Yang, C., & An, T. (2024). Network Synchronization via Pinning Control from an Attacker-Defender Game Perspective. Mathematics, 12(12), 1841. https://doi.org/10.3390/math12121841