Convergence Result for Solving the Split Fixed Point Problem with Multiple Output Sets in Nonlinear Spaces
Abstract
1. Introduction
Motivation
2. Preliminaries
- (i)
- ,
- (ii)
- .
- (i)
- ,
- (ii)
- .
3. Problem Formulation
4. Results
Algorithm 1: For arbitrarily chosen, define the sequence as given below. |
Step 1 Calculate Else, , then let and . Step 4 Compute |
5. Some Consequences
5.1. Split Feasibility Problem with Multiple Output Sets
5.2. The Split Common Fixed Point Problem for Nonexpansive Mappings
Algorithm 2: Let , is iteratively generated as follows. |
Step 1 Calculate Else, if , then let and . Step 4 Compute |
6. Numerical Illustration
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Censor, Y.; Segal, A. The split common fixed point problem for directed operators. J. Convex Anal. 2009, 16, 587–600. [Google Scholar]
- Byrne, C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 2002, 18, 441. [Google Scholar] [CrossRef]
- Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A. The Split Feasibility Model Leading to a Unified Approach for Inversion Problems in Intensity-Modulated Radiation Therapy; Technical Report 20 April; Department of Mathematics, University of Haifa: Haifa, Israel, 2005. [Google Scholar]
- Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T. The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 2005, 21, 2071. [Google Scholar] [CrossRef]
- Masad, E.; Reich, S. A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 2007, 8, 367–371. [Google Scholar]
- Moudafi, A. The split common fixed-point problem for demicontractive mappings. Inverse Probl. 2010, 26, 055007. [Google Scholar] [CrossRef] [PubMed]
- Censor, Y.; Gibali, A.; Reich, S. Algorithms for the split variational inequality problem. Numer. Algorithms 2012, 59, 301–323. [Google Scholar] [CrossRef]
- Taiwo, A.; Alakoya, T.O.; Mewomo, O.T. Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces. Numer. Algorithms 2021, 86, 1359–1389. [Google Scholar] [CrossRef]
- Younis, M.; Dar, A.H.; Hussain, N. A revised algorithm for finding a common solution of variational inclusion and fixed point problems. Filomat 2023, 37, 6949–6960. [Google Scholar] [CrossRef]
- Ogwo, G.N.; Izuchukwu, C.; Mewomo, O.T. Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity. Numer. Algorithms 2021, 88, 1419–1456. [Google Scholar] [CrossRef]
- Byrne, C.; Censor, Y.; Gibali, A.; Reich, S. The split common null point problem. J. Nonlinear Convex Anal. 2012, 13, 759–775. [Google Scholar]
- Tuyen, T.M. A strong convergence theorem for the split common null point problem in Banach spaces. Appl. Math. Optim. 2019, 79, 207–227. [Google Scholar] [CrossRef]
- Reich, S.; Tuyen, T.M. Iterative methods for solving the generalized split common null point problem in Hilbert spaces. Optimization 2020, 69, 1013–1038. [Google Scholar] [CrossRef]
- Gupta, N.; Postolache, M.; Nandal, A.; Chugh, R. A cyclic iterative algorithm for multiple-sets split common fixed point problem of demicontractive mappings without prior knowledge of operator norm. Mathematics 2021, 9, 372. [Google Scholar] [CrossRef]
- Cui, H. Multiple-sets split common fixed-point problems for demicontractive mappings. J. Math. 2021, 2021, 1–6. [Google Scholar] [CrossRef]
- Reich, S.; Tuyen, T.M.; Thuy, N.T.T.; Ha, M.T.N. A new self-adaptive algorithm for solving the split common fixed point problem with multiple output sets in Hilbert spaces. Numer. Algorithms 2022, 89, 1031–1047. [Google Scholar] [CrossRef]
- Bridson, M.R.; Haefliger, A. Metric Spaces of Non-Positive Curvature; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013; Volume 319. [Google Scholar]
- Brown, K.S.; Brown, K.S. Buildings; Springer: New York, NY, USA, 1989; pp. 76–98. [Google Scholar]
- Kirk, W.A. Fixed point Theorems in spaces and R-trees. Fixed Point Theory Appl. 2004, 2004, 1–8. [Google Scholar] [CrossRef]
- Bruhat, F.; Tits, J. Groupes reductifs sur un corps local: I. Donnees radicielles valuees. Publ. Math. L’Ihes 1972, 41, 5–251. [Google Scholar] [CrossRef]
- Lim, T.C. Remarks on some fixed point Theorems. Proc. Am. Math. Soc. 1976, 60, 179–182. [Google Scholar] [CrossRef]
- Kirk, W.A.; Panyanak, B. A concept of convergence in geodesic spaces. Nonlinear Anal. Theory Methods Appl. 2008, 68, 3689–3696. [Google Scholar] [CrossRef]
- Dhompongsa, S.; Kirk, W.A.; Sims, B. Fixed points of uniformly Lipschitzian mappings. Nonlinear Anal. Theory, Methods Appl. 2006, 65, 762–772. [Google Scholar] [CrossRef]
- Berg, I.D.; Nikolaev, I.G. Quasilinearization and curvature of Aleksandrov spaces. Geom. Dedicata 2008, 133, 195–218. [Google Scholar] [CrossRef]
- Dehghan, H.; Rooin, J. A characterization of metric projection in Hadamard spaces with applications. J. Nonlinear Convex Anal. 2013; to appear. [Google Scholar]
- Abbas, M.; Ibrahim, Y.; Khan, A.R.; De la Sen, M. Split Variational Inclusion Problem and Fixed Point Problem for a Class of Multivalued Mappings in CAT(0) Spaces. Mathematics 2019, 7, 749. [Google Scholar] [CrossRef]
- Dhompongsa, S.; Panyanak, B. On Δ-convergence Theorems in CAT(0) spaces. Comput. Math. Appl. 2008, 56, 2572–2579. [Google Scholar] [CrossRef]
- Chaoha, P.; Phon-On, A. A note on fixed point sets in CAT(0) spaces. J. Math. Anal. Appl. 2006, 320, 983–987. [Google Scholar] [CrossRef]
- Wangkeeree, R.; Preechasilp, P. Viscosity approximation methods for nonexpansive semigroups in CAT(0) spaces. Fixed Point Theory Appl. 2013, 2013, 1–16. [Google Scholar] [CrossRef]
- Mainge, P.E. The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces. Comput. Math. Appl. 2010, 59, 74–79. [Google Scholar] [CrossRef]
- Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M. Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. Theory Methods Appl. 2007, 67, 2350–2360. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, M.; Kalsoom, A.; Albargi, A.H.; Hussain, A.; Sundas, H. Convergence Result for Solving the Split Fixed Point Problem with Multiple Output Sets in Nonlinear Spaces. Mathematics 2024, 12, 1825. https://doi.org/10.3390/math12121825
Rashid M, Kalsoom A, Albargi AH, Hussain A, Sundas H. Convergence Result for Solving the Split Fixed Point Problem with Multiple Output Sets in Nonlinear Spaces. Mathematics. 2024; 12(12):1825. https://doi.org/10.3390/math12121825
Chicago/Turabian StyleRashid, Maliha, Amna Kalsoom, Amer Hassan Albargi, Aftab Hussain, and Hira Sundas. 2024. "Convergence Result for Solving the Split Fixed Point Problem with Multiple Output Sets in Nonlinear Spaces" Mathematics 12, no. 12: 1825. https://doi.org/10.3390/math12121825
APA StyleRashid, M., Kalsoom, A., Albargi, A. H., Hussain, A., & Sundas, H. (2024). Convergence Result for Solving the Split Fixed Point Problem with Multiple Output Sets in Nonlinear Spaces. Mathematics, 12(12), 1825. https://doi.org/10.3390/math12121825