ARFGCN: Adaptive Receptive Field Graph Convolutional Network for Urban Crowd Flow Prediction
Abstract
:1. Introduction
- We propose a novel framework (ARFGCN) for urban crowd flow prediction. To the best of our knowledge, this is the first approach to simultaneously consider dynamic receptive fields in both spatial and temporal dimensions.
- We propose a time-aware adaptive receptive field gating mechanism to enable each region to independently and adaptively determine its receptive field size, considering temporal dynamics to capture intricate spatial dependencies.
- We conduct extensive experiments on two real-world datasets to evaluate the effectiveness of ARFGCN for urban crowd flow prediction. The empirical findings validate that the proposed ARFGCN exhibits notable enhancements relative to the benchmarked methodologies.
2. Related Works
3. Problem Overview
4. Method
4.1. Graph Construction
4.2. Stacked 3DGCN
4.3. TARF
4.4. Prediction Layer
4.5. Loss and Training
Algorithm 1: Training process of ARFGCN |
5. Experimental Setup
5.1. Experimental Data
5.2. Baseline Methods
- HA (Historical Average) [37]: This approach employs the historical average of inflow and outflow as the predicted future crowd flow.
- VAR (Vector Autoregression) [38]: A data-driven time-series prediction model that captures interdependencies among multiple time series.
- STGCN [26]: A spatio-temporal prediction method based on GCNs, combining graph convolutions and gated temporal convolutions to model spatial and temporal dependencies.
- DCRNN [30]: Leverages RNNs to capture temporal dependencies and bidirectional random walks on graphs to model spatial dependencies.
- MVGCN [28]: A deep learning model for non-grid-based crowd flow prediction, utilizing multi-view data from various time scales.
- AGCRN [31]: A deep spatio-temporal model capable of automatically capturing spatial and temporal correlations in time-series data without predefined graph structures.
- 3DGCN [13]: A model for non-grid-based crowd flow prediction that generalizes 3D CNNs from structured data to graph-structured data to capture spatio-temporal correlations.
5.3. Parameters
6. Experimental Results
6.1. Overall Performance
6.2. Ablation Study
6.3. The Effect of the Number of Layers
6.4. Analysis of Learned Adaptive Receptive Field
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Miao, H.; Li, J.; Cao, J. Spatio-temporal knowledge transfer for urban crowd flow prediction via deep attentive adaptation networks. IEEE Trans. Intell. Transp. Syst. 2021, 23, 4695–4705. [Google Scholar] [CrossRef]
- Xie, P.; Li, T.; Liu, J.; Du, S.; Yang, X.; Zhang, J. Urban flow prediction from spatiotemporal data using machine learning: A survey. Inf. Fusion 2020, 59, 1–12. [Google Scholar] [CrossRef]
- Alghamdi, T.; Elgazzar, K.; Bayoumi, M.; Sharaf, T.; Shah, S. Forecasting traffic congestion using ARIMA modeling. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference, Tangier, Morocco, 24–28 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1227–1232. [Google Scholar]
- Duan, P.; Mao, G.; Zhang, C.; Wang, S. STARIMA-based traffic prediction with time-varying lags. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1610–1615. [Google Scholar]
- Zhang, J.; Zheng, Y.; Qi, D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Lin, Z.; Feng, J.; Lu, Z.; Li, Y.; Jin, D. Deepstn+: Context-aware spatial-temporal neural network for crowd flow prediction in metropolis. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 1020–1027. [Google Scholar]
- He, Z.; Chow, C.Y.; Zhang, J.D. STCNN: A spatio-temporal convolutional neural network for long-term traffic prediction. In Proceedings of the 2019 20th IEEE International Conference on Mobile Data Management (MDM), Hong Kong, China, 10–13 June 2019; pp. 226–233. [Google Scholar]
- Wen, H.; Lin, Y.; Xia, Y.; Wan, H.; Wen, Q.; Zimmermann, R.; Liang, Y. Diffstg: Probabilistic spatio-temporal graph forecasting with denoising diffusion models. In Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems, Hamburg, Germany, 13–16 November 2023; pp. 1–12. [Google Scholar]
- Ke, S.; Pan, Z.; He, T.; Liang, Y.; Zhang, J.; Zheng, Y. AutoSTG+: An automatic framework to discover the optimal network for spatio-temporal graph prediction. Artif. Intell. 2023, 318, 103899. [Google Scholar] [CrossRef]
- Deng, P.; Zhao, Y.; Liu, J.; Jia, X.; Wang, M. Spatio-temporal neural structural causal models for bike flow prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 4242–4249. [Google Scholar]
- Wang, T.; Chen, J.; Lü, J.; Liu, K.; Zhu, A.; Snoussi, H.; Zhang, B. Synchronous spatiotemporal graph transformer: A new framework for traffic data prediction. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 10589–10599. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Liu, H.; Zhang, L.; Zhang, Q.; Zhu, H.; Xiong, H. Talent demand-supply joint prediction with dynamic heterogeneous graph enhanced meta-learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 2957–2967. [Google Scholar]
- Xia, T.; Lin, J.; Li, Y.; Feng, J.; Hui, P.; Sun, F.; Guo, D.; Jin, D. 3dgcn: 3-dimensional dynamic graph convolutional network for citywide crowd flow prediction. ACM Trans. Knowl. Discov. Data 2021, 15, 1–21. [Google Scholar] [CrossRef]
- Luo, J.; Huang, Y.S.; Weng, Y.S. Design of variable traffic light control systems for preventing two-way grid network traffic jams using timed Petri nets. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3117–3127. [Google Scholar] [CrossRef]
- Chen, Z.; Wen, J.; Geng, Y. Predicting future traffic using hidden markov models. In Proceedings of the 2016 IEEE 24th International Conference on Network Protocols (ICNP), Singapore, 8–11 November 2016; pp. 1–6. [Google Scholar]
- Le, T.V.; Oentaryo, R.; Liu, S.; Lau, H.C. Local Gaussian processes for efficient fine-grained traffic speed prediction. IEEE Trans. Big Data 2016, 3, 194–207. [Google Scholar] [CrossRef]
- Zuo, J.; Zeitouni, K.; Taher, Y.; Garcia-Rodriguez, S. Graph convolutional networks for traffic forecasting with missing values. Data Min. Knowl. Discov. 2023, 37, 913–947. [Google Scholar] [CrossRef]
- He, R.; Liu, Y.; Xiao, Y.; Lu, X.; Zhang, S. Deep spatio-temporal 3D densenet with multiscale ConvLSTM-Resnet network for citywide traffic flow forecasting. Knowl.-Based Syst. 2022, 250, 109054. [Google Scholar] [CrossRef]
- Mo, J.; Gong, Z.; Chen, J. Attentive differential convolutional neural networks for crowd flow prediction. Knowl.-Based Syst. 2022, 258, 110006. [Google Scholar] [CrossRef]
- Liang, Y.; Ouyang, K.; Wang, Y.; Liu, Y.; Zhang, J.; Zheng, Y.; Rosenblum, D.S. Revisiting convolutional neural networks for citywide crowd flow analytics. In Proceedings of the Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD, Bilbao, Spain, 13–17 September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 578–594. [Google Scholar]
- Dai, G.; Hu, X.; Ge, Y.; Ning, Z.; Liu, Y. Attention based simplified deep residual network for citywide crowd flows prediction. Front. Comput. Sci. 2021, 15, 1–12. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; Yi, X. DNN-based prediction model for spatio-temporal data. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Francisco, CA, USA, 31 October–3 November 2016; pp. 92:1–92:4. [Google Scholar]
- Chen, C.; Li, K.; Teo, S.G.; Chen, G.; Zou, X.; Yang, X.; Vijay, R.C.; Feng, J.; Zeng, Z. Exploiting spatio-temporal correlations with multiple 3d convolutional neural networks for citywide vehicle flow prediction. In Proceedings of the 2018 IEEE International Conference on Data Mining, Singapore, 17–20 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 893–898. [Google Scholar]
- Liang, Y.; Ke, S.; Zhang, J.; Yi, X.; Zheng, Y. GeoMAN: Multi-level Attention Networks for Geo-sensory Time Series Prediction. In Proceedings of the International Joint Conferences on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3428–3434. [Google Scholar]
- Liu, L.; Zhang, R.; Peng, J.; Li, G.; Du, B.; Lin, L. Attentive crowd flow machines. In Proceedings of the ACM Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 1553–1561. [Google Scholar]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In Proceedings of the International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3634–3640. [Google Scholar]
- Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting. In Proceedings of the AAAI, Honolulu, HI, USA, 27 January 2019; pp. 922–929. [Google Scholar]
- Sun, J.; Zhang, J.; Li, Q.; Yi, X.; Liang, Y.; Zheng, Y. Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks. IEEE Trans. Knowl. Data Eng. 2022, 34, 2348–2359. [Google Scholar] [CrossRef]
- Huang, R.; Huang, C.; Liu, Y.; Dai, G.; Kong, W. LSGCN: Long short-term traffic prediction with graph convolutional networks. In Proceedings of the IJCAI, Yokohama, Japan, 11–17 July 2020; Volume 7, pp. 2355–2361. [Google Scholar]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2018, arXiv:1707.01926. [Google Scholar] [CrossRef]
- Bai, L.; Yao, L.; Li, C.; Wang, X.; Wang, C. Adaptive graph convolutional recurrent network for traffic forecasting. Adv. Neural Inf. Process. Syst. 2020, 33, 17804–17815. [Google Scholar]
- He, Y.; Li, L.; Zhu, X.; Tsui, K.L. Multi-graph convolutional-recurrent neural network (MGC-RNN) for short-term forecasting of transit passenger flow. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18155–18174. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Miao, H.; Peng, Z.; Yu, P.S. Multivariate correlation-aware spatio-temporal graph convolutional networks for multi-scale traffic prediction. ACM Trans. Intell. Syst. Technol. 2022, 13, 1–22. [Google Scholar] [CrossRef]
- Chattaraj, U.; Seyfried, A.; Chakroborty, P. Comparison of pedestrian fundamental diagram across cultures. Adv. Complex Syst. 2009, 12, 393–405. [Google Scholar] [CrossRef]
- Aghabayk, K.; Soltani, A.; Shiwakoti, N. Investigating pedestrians’ exit choice with incident location awareness in an emergency in a multi-level shopping complex. Sustainability 2022, 14, 11875. [Google Scholar] [CrossRef]
- Spinelli, I.; Scardapane, S.; Uncini, A. Adaptive propagation graph convolutional network. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4755–4760. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Demiryurek, U.; Shahabi, C. Utilizing real-world transportation data for accurate traffic prediction. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 595–604. [Google Scholar]
- Chandra, S.R.; Al-Deek, H. Predictions of freeway traffic speeds and volumes using vector autoregressive models. J. Intell. Transp. Syst. 2009, 13, 53–72. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
Dataset | BikeNYC | YellowTaxi |
---|---|---|
Data type | Bike rent | Taxi trip |
Time span | 1 July 2017–30 September 2017 | 1 January 2022–28 February 2022 |
Time interval | 1 h | 1 h |
Number of regions | 82 | 263 |
Number of POIs | 26,202 | 317,445 |
Method | 1 h | 2 h | 3 h | |||
---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | |
HA | 17.05 | 9.97 | 17.05 | 9.97 | 17.05 | 9.97 |
VAR | 11.45 | 7.25 | 16.77 | 10.34 | 20.63 | 12.60 |
STGCN | 11.73 | 6.49 | 12.93 | 7.06 | 15.37 | 7.94 |
DCRNN | 9.85 | 5.88 | 10.39 | 6.19 | 12.37 | 7.72 |
MVGCN | 9.64 | 5.65 | 13.53 | 7.72 | 13.93 | 8.00 |
AGCRN | 14.67 | 6.49 | 14.92 | 6.72 | 15.89 | 7.15 |
3DGCN | 7.76 | 4.81 | 9.49 | 5.61 | 11.74 | 6.99 |
ARFGCN | 7.55 | 4.61 | 8.35 | 5.05 | 8.85 | 5.34 |
w/o-time | 7.61 | 4.72 | 8.83 | 5.41 | 8.95 | 5.58 |
Method | 1 h | 2 h | 3 h | |||
---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | |
HA | 22.96 | 11.01 | 22.96 | 11.01 | 22.96 | 11.01 |
VAR | 23.09 | 12.04 | 32.43 | 16.74 | 37.31 | 19.22 |
STGCN | 12.04 | 4.59 | 14.83 | 5.77 | 18.46 | 7.10 |
DCRNN | 11.13 | 3.43 | 17.12 | 4.95 | 21.96 | 6.29 |
MVGCN | 10.81 | 3.74 | 12.38 | 4.25 | 13.23 | 4.52 |
AGCRN | 11.44 | 3.31 | 11.56 | 3.46 | 12.15 | 3.61 |
3DGCN | 7.15 | 2.76 | 9.05 | 3.37 | 11.43 | 4.02 |
ARFGCN | 6.95 | 2.6 | 7.81 | 2.86 | 8.35 | 3.04 |
w/o-time | 7.15 | 2.72 | 8.16 | 3.05 | 9.20 | 3.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, G.; Huang, H.; Peng, X.; Zhang, B.; Fu, X. ARFGCN: Adaptive Receptive Field Graph Convolutional Network for Urban Crowd Flow Prediction. Mathematics 2024, 12, 1739. https://doi.org/10.3390/math12111739
Dai G, Huang H, Peng X, Zhang B, Fu X. ARFGCN: Adaptive Receptive Field Graph Convolutional Network for Urban Crowd Flow Prediction. Mathematics. 2024; 12(11):1739. https://doi.org/10.3390/math12111739
Chicago/Turabian StyleDai, Genan, Hu Huang, Xiaojiang Peng, Bowen Zhang, and Xianghua Fu. 2024. "ARFGCN: Adaptive Receptive Field Graph Convolutional Network for Urban Crowd Flow Prediction" Mathematics 12, no. 11: 1739. https://doi.org/10.3390/math12111739
APA StyleDai, G., Huang, H., Peng, X., Zhang, B., & Fu, X. (2024). ARFGCN: Adaptive Receptive Field Graph Convolutional Network for Urban Crowd Flow Prediction. Mathematics, 12(11), 1739. https://doi.org/10.3390/math12111739