Using Rotations to Control Observable Relativistic Effects
Abstract
1. Introduction
2. Preliminaries
3. Generalized Euler Decompositions
4. Complex Solutions
5. Cancellation of Boosts
6. Clifford’s Perspective
7. Kinematics and Relativity
8. Geometric Phases in Electrodynamics
9. The 2 + 1 Setting
10. Back to Factorizations
11. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Hur, J.H.; Jo, S.G. Rigid Motion and Ehrenfest’s Paradox. J. Korean Phys. Soc. 2005, 47, 568. [Google Scholar]
- Pascoli, G. The Sagnac Effect and Its Interpretation by Paul Langevin. C. R. Phys. 2017, 18, 563–569. [Google Scholar] [CrossRef]
- Karimeddiny, S.; Cham, T.; Smedley, O.; Ralph, D.; Luo, Y. Sagnac Interferometry for High-sensitivity Optical Measurements of Spin-orbit Torque. Sci. Adv. 2023, 9, eadi9039. [Google Scholar] [CrossRef] [PubMed]
- Barrett, B.; Geiger, R.; Dutta, I.; Meunier, M.; Canuel, B.; Gauguet, A.; Bouyer, P.; Landragin, A. The Sagnac Effect: 20 Years of Development in Matter-wave Interferometry. C. R. Phys. 2014, 15, 875–883. [Google Scholar] [CrossRef]
- Howell, J.C.; Kahn, M.; Grynszpan, E.; Cohen, Z.; Residori, S.; Bortolozzo, U. Doppler Gyroscopes: Frequency vs Phase Estimation. Phys. Rev. Lett. 2022, 129, 113901. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Kim, Y.S.; Son, D.J. Thomas Precession, Wigner Rotations and Gauge Transformations. Class. Quantum Gravity 1987, 4, 1777–1783. [Google Scholar] [CrossRef]
- Chruśchiński, D.; Jamiołkowski, A. Geometrcic Phases in Classical and Quantum Mechanics; Birkhäuser: Boston, MA, USA, 2004. [Google Scholar]
- Mukunda, N.; Aravind, P.; Simon, R. Wigner Rotations, Bargmann Invariants and Geometric Phases. J. Phys. A Math. Gen. 2003, 36, 2347–2370. [Google Scholar] [CrossRef]
- Batterman, R.W. Falling cats, parallel parking, and polarized light. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2003, 34, 527–557. [Google Scholar] [CrossRef]
- Cisowski, C.; Götte, J.B.; Franke-Arnold, S. Colloquium: Geometric phases of light: Insights from fiber bundle theory. Rev. Mod. Phys. 2022, 94, 031001. [Google Scholar] [CrossRef]
- Jisha, C.P.; Nolte, S.; Alberucci, A. Geometric Phase in Optics: From Wavefront Manipulation to Waveguiding. Laser Photonics Rev. 2021, 15, 2100003. [Google Scholar] [CrossRef]
- Lévay, P. The Geometry of Entanglement: Metrics, Connections and the Geometric Phase. J. Phys. A Math. Gen. 2004, 37, 1821–1842. [Google Scholar] [CrossRef]
- Mosseri, R.; Dandoloff, R. Geometry of Entangled States, Bloch Spheres and Hopf Fibrations. J. Phys. A Math. Gen. 2001, 34, 10243–10252. [Google Scholar] [CrossRef]
- Kassandrov, V.V. Biquaternion Electrodynamics and Weyl-cartan Geometry of Space-time. Gravit. Cosmol. 1995, 1, 216–222. [Google Scholar]
- Delpenich, D. Projective Geometry and Special Relativity. Ann. Phys. 2006, 15, 216–246. [Google Scholar] [CrossRef]
- Lush, D. The Magnetic Force as a Kinematical Consequence of the Thomas Precession. In Proceedings of the Progress in Electromagnetics Research Symposium Proc, Stockholm, Sweden, 12–15 August 2013; pp. 1203–1209. [Google Scholar]
- Royer, A. Why Is the Magnetic Force Similar to a Coriolis Force? arXiv 2011, arXiv:1109.3624. [Google Scholar]
- Rothenstein, B.; Popescu, S. Relativistic Electrodynamics as an Extrapolation of Relativistic Kinematics. arXiv 2007, arXiv:0710.2981. [Google Scholar]
- Ruggiero, M.L. Rotation Effects in Relativity. Universe 2020, 6, 224. [Google Scholar] [CrossRef]
- Rizzi, G.; Ruggiero, M.L. Relativity in Rotating Frames: Relativistic Physics in Rotating Reference Frames; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 135. [Google Scholar]
- Speake, C.C.; Ortolan, A. Measuring Electromagnetic Fields in Rotating Frames of Reference. Universe 2020, 6, 31. [Google Scholar] [CrossRef]
- Kichenassamy, S. The Relativistic Rotation Transformation and the Observer Manifold. Axioms 2023, 12, 1066. [Google Scholar] [CrossRef]
- Piña, E. Rotations with Rodrigues’ Vector. Eur. J. Phys. 2011, 32, 1171–1178. [Google Scholar]
- Bauchau, O.; Trainelli, L.; Bottaso, C. The Vectorial Parameterization of Rotation. Nonlinear Dyn. 2003, 32, 71–92. [Google Scholar] [CrossRef]
- Fedorov, F. The Lorentz Group; Science: Moscow, Russia, 1979. (In Russian) [Google Scholar]
- Brezov, D. On Complex Kinematics and Relativity. Adv. Appl. Clifford Algebr. 2022, 32, 38. [Google Scholar] [CrossRef]
- Brezov, D.; Mladenova, C.; Mladenov, I. Wigner Rotation and Thomas Precession: Geometric Phases and Related Physical Theories. J. Korean Phys. Soc. 2015, 66, 1656–1663. [Google Scholar] [CrossRef]
- Brezov, D. Higher-Dimensional Representations of SL2 and its Real Forms via Plücker Embedding. Adv. Appl. Clifford Algebr. 2017, 27, 2375–2392. [Google Scholar] [CrossRef]
- Brezov, D.; Mladenova, C.; Mladenov, I. A Decoupled Solution to the Generalized Euler Decomposition Problem in R3 and R2,1. J. Geom. Symmetry Phys. 2014, 33, 47–78. [Google Scholar]
- Aste, A. Complex Representation Theory of the Electromagnetic Field. J. Geom. Symmetry Phys. 2012, 28, 47–58. [Google Scholar]
- Nowack, K.C.; Koppens, F.H.L.; Nazarov, Y.V.; Vandersypen, L.M.K. Coherent Control of a Single Electron Spin with Electric Fields. Science 2007, 318, 1430–1433. [Google Scholar] [CrossRef]
- Kroemer, H. The Thomas precession factor in spin–orbit interaction. Am. J. Phys. 2004, 72, 51–52. [Google Scholar] [CrossRef]
- Morales, I.; Neves, B.; Oporto, Z.; Piguet, O. Quantum charged spinning massless particles in 2 + 1 dimensions. Eur. Phys. J. C 2019, 79, 1014. [Google Scholar] [CrossRef]
- Wittenburg, J. Kinematics: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Brezov, D.; Mladenova, C.; Mladenov, I. Factorizations in Special Relativity and Quantum Scattering on the Line. In Advanced Computing in Industrial Mathematicss; Springer: Berlin, Germany, 2017; Volume 681, pp. 1–14. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brezov, D. Using Rotations to Control Observable Relativistic Effects. Mathematics 2024, 12, 1676. https://doi.org/10.3390/math12111676
Brezov D. Using Rotations to Control Observable Relativistic Effects. Mathematics. 2024; 12(11):1676. https://doi.org/10.3390/math12111676
Chicago/Turabian StyleBrezov, Danail. 2024. "Using Rotations to Control Observable Relativistic Effects" Mathematics 12, no. 11: 1676. https://doi.org/10.3390/math12111676
APA StyleBrezov, D. (2024). Using Rotations to Control Observable Relativistic Effects. Mathematics, 12(11), 1676. https://doi.org/10.3390/math12111676