Estimations of Covering Functionals of Convex Bodies Based on Relaxation Algorithm
Abstract
:1. Introduction
2. Covering Functional and the Optimal Value of a VPCP
3. A Relaxation-Based Algorithm for VPCP()
3.1. The Relaxation-Based Algorithm about VPCP
Algorithm 1 A binary search algorithm BS_SolveVPCP() |
|
Algorithm 2 -separated sequence algorithm SelectPointsFromW() |
|
3.2. Sub-Routine BS_SolveVPCP: A Binary Search Algorithm for VPCP
Algorithm 3 A relaxation-based algorithm to solve VPCP() |
|
3.3. Sub-Routine SelectPointsFromW: An -Separated Sequence Generating Algorithm
4. Computational Experiments
4.1. Covering Functionals of the Euclidean Unit Disc
4.2. Covering Functionals of the Simplex
4.3. Covering Functionals of the Regular Octahedron
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boltyanski, V.; Martini, H.; Soltan, P.S. Excursions into Combinatorial Geometry, Universitext; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Martini, H.; Soltan, V. Combinatorial problems on the illumination of convex bodies. Aequationes Math. 1999, 57, 121–152. [Google Scholar] [CrossRef]
- Brass, P.; Moser, W.; Pach, J. Research Problems in Discrete Geometry; Springer: New York, NY, USA, 2005. [Google Scholar]
- Bezdek, K.; Khan, M.A. The geometry of homothetic covering and illumination. In Discrete Geometry and Symmetry; Springer: Cham, Switzerland, 2018; Volume 234, pp. 1–30. [Google Scholar]
- Levi, F.W. Überdeckung eines Eibereiches durch Parallelverschiebung seines offenen Kerns. Arch. Math. 1955, 6, 369–370. [Google Scholar] [CrossRef]
- Lassak, M. Solution of Hadwiger’s covering problem for centrally symmetric convex bodies in E3. J. Lond. Math. Soc. 1984, 30, 501–511. [Google Scholar] [CrossRef]
- Papadoperakis, I. An estimate for the problem of illumination of the boundary of a convex body in E3. Geom. Dedicata 1999, 75, 275–285. [Google Scholar] [CrossRef]
- Prymak, A.; Shepelska, V. On the Hadwiger covering problem in low dimensions. J. Geom. 2020, 111, 42. [Google Scholar] [CrossRef]
- Soltan, P.S. On the illumination of the boundary of a convex body from within. Mat. Sb. 1962, 99, 443–448. [Google Scholar]
- Zong, C. A quantitative program for Hadwiger’s covering conjecture. Sci. China Math. 2010, 53, 2551–2560. [Google Scholar] [CrossRef]
- He, C.; Martini, H.; Wu, S. On covering functionals of convex bodies. J. Math. Anal. Appl. 2016, 437, 1236–1256. [Google Scholar] [CrossRef]
- Li, X.; Meng, L.; Wu, S. Covering functionals of convex polytopes with few vertices. Arch. Math. 2022, 119, 135–146. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, K.; He, C. Homothetic covering of convex hulls of compact convex sets. Contrib. Discret. Math. 2022, 17, 31–37. [Google Scholar]
- Hakimi, S.L. Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 1964, 12, 450–459. [Google Scholar] [CrossRef]
- Kariv, O.; Hakimi, S.L. An algorithmic approach to network location problems I: The p-centers. SIAM J. Appl. Math. 1971, 37, 513–538. [Google Scholar] [CrossRef]
- Minieka, E. The m-center problem. SIAM Rev. 1970, 12, 138–139. [Google Scholar] [CrossRef]
- Daskin, M. Network and Discrete Location: Models, Algorithms, and Applications; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Ilhan, T.; Pınar, M.C. An Efficient Exact Algorithm for the Vertex p-Center Problem. 2001. Available online: http://www.optimization-online.org/DB_HTML/2001/09/376.html (accessed on 15 April 2023).
- Al-khedhairi, A.; Salhi, S. Enhancements to two exact algorithms for solving the vertex p-center problem. J. Math. Modell. Algo. 1995, 4, 129–147. [Google Scholar] [CrossRef]
- Chen, R.; Handler, G.Y. Relaxation method for the solution of the minimax location-allocation problem in Euclidean space. Nav. Res. Logist. 1987, 34, 775–788. [Google Scholar] [CrossRef]
- Chen, D.; Chen, R. New relaxation-based algorithms for the optimal solution of the continuous and discrete p-center problems. Comput. Oper. Res. 2009, 36, 1646–1655. [Google Scholar] [CrossRef]
- Irawan, C.A.; Salhi, S.; Drezner, Z. Hybrid meta-heuristics with VNS and exact methods: Application to large unconditional and conditional vertex p-centre problems. J. Heurist 2015, 22, 507–537. [Google Scholar] [CrossRef]
- Contardo, C.; Iori, M.; Kramer, R. A scalable exact algorithm for the vertex p-center problem. Comput. Oper. Res. 2019, 103, 211–220. [Google Scholar] [CrossRef]
- He, C.; Lv, Y.; Martini, H.; Wu, S. A branch-and-bound approach for estimating covering functionals of convex bodies. J. Optim. Theory Appl. 2023, 196, 1036–1055. [Google Scholar] [CrossRef]
- Fejes Tóth, G. Thinnest covering of a circle by eight, nine, or ten congruent circles. In Combinatorial and Computational Geometry; Mathematical Sciences Research Institute Publications, Cambridge University Press: Cambridge, UK, 2005; Volume 52, pp. 361–376. [Google Scholar]
- Yu, M.; Gao, S.; He, C.; Wu, S. Estimations of covering functionals of simplices. Math. Inequalities Appl. 2023; preprint submitted. [Google Scholar]
- Lian, Y.; Zhang, Y. Covering the crosspolytope with its smaller homothetic copies. arXiv 2021, arXiv:2103.10004v2. [Google Scholar]
e | p | Ranges of | Known Exact Values | |||
---|---|---|---|---|---|---|
0.002 | 5 | (8, 10) | (6, 9) | 0.610644⋯ | [0.5987⋯, 0.6142⋯] | 0.609⋯ [4] |
0.002 | 6 | (8, 10) | (6, 8) | 0.557473⋯ | [0.5409⋯, 0.5611⋯] | 0.555⋯ [4] |
0.002 | 7 | (8, 10) | (6, 8) | 0.504028⋯ | [0.4895⋯, 0.5076⋯] | 0.5 [25] |
0.002 | 8 | (8, 10) | (6, 8) | 0.447640⋯ | [0.4311⋯, 0.4512⋯] | 0.445⋯ [25] |
n | e | p | Ranges of | Known Exact Values or Estimations | ||||
---|---|---|---|---|---|---|---|---|
3 | 0.001 | 4 | 0.002 | 0.01 | 0.75632⋯ | [0.7433⋯, 0.7643⋯] | [10] | |
3 | 0.001 | 5 | 0.002 | 0.01 | 0.69241⋯ | [0.6774⋯, 0.7004⋯] | [10] | |
3 | 0.001 | 6 | 0.002 | 0.01 | 0.67233⋯ | [0.6573⋯, 0.6803⋯] | [26] | |
3 | 0.001 | 7 | 0.002 | 0.02 | 0.64031⋯ | [0.6073⋯, 0.6483⋯] | [26] | |
3 | 0.001 | 8 | 0.002 | 0.02 | 0.62040⋯ | [0.5794⋯, 0.6284⋯] | ≤8/13 [26] | |
4 | 0.001 | 5 | 0.008 | 0.04 | 0.80058⋯ | [0.7495⋯, 0.8405⋯] | ||
4 | 0.001 | 6 | 0.008 | 0.04 | 0.76012⋯ | [0.6991⋯, 0.8001⋯] | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Lv, Y.; Zhao, Y.; He, C.; Wu, S. Estimations of Covering Functionals of Convex Bodies Based on Relaxation Algorithm. Mathematics 2023, 11, 2000. https://doi.org/10.3390/math11092000
Yu M, Lv Y, Zhao Y, He C, Wu S. Estimations of Covering Functionals of Convex Bodies Based on Relaxation Algorithm. Mathematics. 2023; 11(9):2000. https://doi.org/10.3390/math11092000
Chicago/Turabian StyleYu, Man, Yafang Lv, Yanping Zhao, Chan He, and Senlin Wu. 2023. "Estimations of Covering Functionals of Convex Bodies Based on Relaxation Algorithm" Mathematics 11, no. 9: 2000. https://doi.org/10.3390/math11092000
APA StyleYu, M., Lv, Y., Zhao, Y., He, C., & Wu, S. (2023). Estimations of Covering Functionals of Convex Bodies Based on Relaxation Algorithm. Mathematics, 11(9), 2000. https://doi.org/10.3390/math11092000