#
Geodesics and Translation Curves in ${\mathrm{Sol}}_{0}^{4}$

## Abstract

**:**

## 1. Introduction

Complex space forms | Direct Product Spaces | Direct Product Spaces | Warped Product Spaces |

${\mathbb{E}}^{4}$, ${\mathbb{H}}^{4}$, ${\mathbb{S}}^{4}$, | ${\mathbb{S}}^{2}\times {\mathbb{S}}^{2}$, ${\mathbb{S}}^{2}\times {\mathbb{E}}^{2}$, ${\mathbb{S}}^{2}\times {\mathbb{H}}^{2}$, | ${\mathbb{S}}^{3}\times {\mathbb{E}}^{1}$, ${\mathbb{H}}^{3}\times {\mathbb{E}}^{1}$ | ${\mathrm{Sol}}_{0}^{4}$, ${\mathrm{Sol}}_{1}^{4}$, ${\mathrm{F}}^{4}$, |

$\mathbb{C}{P}^{2}$, $\mathbb{C}{H}^{2}$ | ${\mathbb{E}}^{2}\times {\mathbb{H}}^{2}$, ${\mathbb{H}}^{2}\times {\mathbb{H}}^{2}$ | ${\mathrm{Nil}}_{3}\times {\mathbb{E}}^{1}$, ${\tilde{\mathrm{SL}}}_{2}\mathbb{R}\times {\mathbb{E}}^{1}$ | ${\mathrm{Nil}}^{4}$, ${\mathrm{Sol}}_{m,n}^{4}$ |

## 2. The Model Space ${\mathrm{Sol}}_{\mathbf{0}}^{\mathbf{4}}$

#### 2.1. Lie Group and Lie Algebra

**Remark 1.**

#### 2.2. Metric and Basis

#### 2.3. Levi–Civita Connection

#### 2.4. Riemannian and Sectional Curvatures

## 3. Geodesics in ${\mathrm{Sol}}_{\mathbf{0}}^{\mathbf{4}}$

**Theorem 1.**

#### 3.1. Geodesics in Hypersurface $\mathit{t}=\mathit{const}$

#### 3.2. Geodesics in Hypersurface $\mathit{z}=\mathit{const}$

#### 3.3. Geodesics in Hypersurface $\mathit{y}=\mathit{const}$

**Remark 2.**

## 4. Translation Curves in ${\mathrm{Sol}}_{\mathbf{0}}^{\mathbf{4}}$

#### 4.1. Translation Curves in $So{l}_{0}^{4}$

**Theorem 2.**

**Remark 3.**

#### 4.2. Curvature Properties of Translation Curves

**Definition 1.**

**Theorem 3.**

#### 4.3. Translation Spheres in $So{l}_{0}^{4}$

**Proposition 1.**

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Thurston, W.M. Geometry and topology of three manifolds. In Princeton Lecture Notes; Princeton University Press: Princeton, NJ, USA, 1980. [Google Scholar]
- Thurston, W.M. Three-Dimensional Geometry and Topology I. In Princeton Mathematical Series; Levy, S., Ed.; Princeton University Press: Princeton, NJ, USA, 1997; p. 35. [Google Scholar]
- Perelman, G. The entropy formula for the Ricci flow and its geometric applications. arXiv
**2002**, arXiv:0211159. [Google Scholar] - Perelman, G. Ricci flow with surgery on three-manifolds. arXiv
**2003**, arXiv:0303109. [Google Scholar] - Perelman, G. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv
**2003**, arXiv:0307245. [Google Scholar] [CrossRef] - Filipkiewicz, R. Four Dimensional Geometries. Ph.D. Thesis, University of Warwick, Coventry, UK, 1983. [Google Scholar]
- Wall, C.T.C. Geometric structures on compact complex analytic surfaces. Topology
**1986**, 25, 119–153. [Google Scholar] [CrossRef][Green Version] - Erjavec, Z.; Inoguchi, J. Minimal submanifolds in ${\mathrm{Sol}}_{0}^{4}$. J. Geom. Anal. 2022; submitted. [Google Scholar]
- Erjavec, Z.; Inoguchi, J. J-trajectories in 4-dimensional solvable Lie groups ${\mathrm{Sol}}_{0}^{4}$. Math. Phys. Anal. Geom.
**2022**, 15, 8. [Google Scholar] [CrossRef] - Molnár, E.; Szilágyi, B. Translation curves and their spheres in homogeneous geometries. Publ. Math. Debrecen
**2011**, 78, 327–346. [Google Scholar] [CrossRef] - Scott, P. The geometries of 3-manifolds. Bull. Lond. Math. Soc.
**1983**, 15, 401–487. [Google Scholar] [CrossRef] - Bölcskai, A.; Szilágyi, B. Frenet formulas and geodesics in SOL geometry. Beiträge Algebra Geometrie
**2007**, 48, 411–421. [Google Scholar] - Maeda, S.; Adachi, T. Holomorphic helices in a complex space form. Proc. Am. Math. Soc.
**1997**, 125, 1197–1202. [Google Scholar] [CrossRef][Green Version]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Erjavec, Z.
Geodesics and Translation Curves in *Mathematics* **2023**, *11*, 1533.
https://doi.org/10.3390/math11061533

**AMA Style**

Erjavec Z.
Geodesics and Translation Curves in *Mathematics*. 2023; 11(6):1533.
https://doi.org/10.3390/math11061533

**Chicago/Turabian Style**

Erjavec, Zlatko.
2023. "Geodesics and Translation Curves in *Mathematics* 11, no. 6: 1533.
https://doi.org/10.3390/math11061533