Modeling the Impact of Overcoming the Green Walls Implementation Barriers on Sustainable Building Projects: A Novel Mathematical Partial Least Squares—SEM Method
Abstract
:1. Introduction
- i.
- What are the existing barriers concerning GWs adoption?
- ii.
- How could these barriers be copiously identified, and the significant ones reserved, given Nigeria’s context?
2. Literature Review
2.1. Overall Sustainable Success
2.1.1. Economic
2.1.2. Environmental
2.1.3. Social
2.2. The Relationship between GWs Implementation on Overall Sustainable Success OSS
3. The Study Design and Methods
- i.
- Commercial viewpoints, awareness and norms;
- ii.
- The connection between aspects, chiefly cause-and-effect interfaces [57].
3.1. Analysis Construct Validity: EFA Assessment
3.2. Development of SEM-PLS Model
3.2.1. Common Method Variance
3.2.2. Analytical Model
Convergent Validity
Discriminant Validity
Operational Model
4. Results
4.1. EFA for Green Walls Implementation Barriers
4.2. Common Method Bias (CMB)
4.3. Analytical Model
- i.
- Cross loading;
- ii.
- Hetrotrait-Monotrait Criterion Ratio (HTMT);
- iii.
- Fronell-Larcker Criteria.
4.4. Second-Order Analysis
4.5. Analysis of the Structural Model
4.6. The Structural Model’s Exploratory Power
4.7. Importance Performance Matrix Analysis (IPMA)
5. Discussion
6. Conclusions
6.1. Empirical and Conceptual Contributions
- Conceptually, this study contributes by conceptualizing and identifying other concepts that can be added to the theoretical context, including the influence of GW adoption barriers on OSS throughout the lifecycle of projects.
- There is extensive literature on GWs adoption from advanced countries. In contrast, there is a dearth of good literature from developing nations, including Nigeria. This study has lessened this gap by assessing the major obstacles to GWs implementation with OSS.
- The research results, i.e., the proposed model, is a novel estimating model generated for the construction industry to envisage the effect of GW adoption hurdles on OSS in the building project lifecycle in the AECO industry.
- This model is expected to propel the adoption of GWs in third-world nations. This experiential contribution focuses on analysing the conceptual relationships among the binary constructs, i.e., GW adoption barriers and OSS in building project lifecycle. The existing literature has not fully explored this.
6.2. Managerial Implications
- It offers AECO companies major barriers that could be eradicated to tackle the problems and barriers linked to GWs adoption, improving client satisfaction via quality visualization.
- It aids decision-making concerning analysing GW adoption barriers on OSS throughout the building project lifecycle.
6.3. Research Limitations and Future Direction
- Firstly, this study has geographical limits. Thus, the current results may be difficult to generalize. The survey tool applied in this research was administered to building experts in Southwestern Nigeria. Hence, future studies are needed to expand the geographical scope beyond this study by incorporating more regions in Nigeria and similar developing nations for a more valid generalization of research results.
- Secondly, this study was cross-sectional and did not incorporate historical and organizational perspectives on GWs adoption. Therefore, upcoming research works ought to be longitudinal to enable a profound perception of the interface among GW adoption hurdles and OSS in building project lifecycle.
- Thirdly, it concentrated on the PLS-SEM application to assess the connexion concerning GW adoption hurdles and OSS in building project lifecycle via theoretical conceptualization. Therefore, upcoming research should concentrate on the identification of the extent of sustainable implementation via theory adoption, including the technology acceptance model (TAM), technology organization and environment model (TOEM), and innovation diffusion theory (IDT).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aidy, A.; Rady, M.; Mashhour, I.M.; Mahfouz, S.Y. Structural Design Optimization of Flat Slab Hospital Buildings Using Genetic Algorithms. Buildings 2022, 12, 2195. [Google Scholar] [CrossRef]
- Castiglia Feitosa, R.; Wilkinson, S.J. Small-scale experiments of seasonal heat stress attenuation through a combination of green roof and green walls. J. Clean. Prod. 2020, 250, 119443. [Google Scholar] [CrossRef]
- Imran, H.M.; Kala, J.; Ng, A.W.M.; Muthukumaran, S. Effectiveness of green and cool roofs in mitigating urban heat island effects during a heatwave event in the city of Melbourne in southeast Australia. J. Clean. Prod. 2018, 197, 393–405. [Google Scholar] [CrossRef]
- Fabijańczyk, P.; Zawadzki, J. Spatial correlations of NDVI and MSAVI2 indices of green and forested areas of urban agglomeration, case study Warsaw, Poland. Remote Sens. Appl. Soc. Environ. 2022, 26, 100721. [Google Scholar] [CrossRef]
- Gabriel, K.M.A.; Endlicher, W.R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ. Pollut. 2011, 159, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Perini, K.; Rosasco, P. Is greening the building envelope economically sustainable? An analysis to evaluate the advantages of economy of scope of vertical greening systems and green roofs. Urban For. Urban Green. 2016, 20, 328–337. [Google Scholar] [CrossRef]
- Helman, D.; Yungstein, Y.; Mulero, G.; Michael, Y. High-Throughput Remote Sensing of Vertical Green Living Walls (VGWs) in Workplaces. Remote Sens. 2022, 14, 3485. [Google Scholar] [CrossRef]
- Gomez-Martinez, F.; de Beurs, K.M.; Koch, J.; Widener, J. Multi-Temporal Land Surface Temperature and Vegetation Greenness in Urban Green Spaces of Puebla, Mexico. Land 2021, 10, 155. [Google Scholar] [CrossRef]
- Moreno, R.; Ojeda, N.; Azócar, J.; Venegas, C.; Inostroza, L. Application of NDVI for identify potentiality of the urban forest for the design of a green corridors system in intermediary cities of Latin America: Case study, Temuco, Chile. Urban For. Urban Green. 2020, 55, 126821. [Google Scholar] [CrossRef]
- Tabatabaee, S.; Ashour, M.; Mohandes, S.R.; Sadeghi, H.; Mahdiyar, A.; Hosseini, M.R.; Ismail, S. Deterrents to the adoption of green walls: A hybrid fuzzy-based approach. Eng. Constr. Archit. Manag. 2022, 29, 3460–3479. [Google Scholar] [CrossRef]
- Koch, K.; Ysebaert, T.; Denys, S.; Samson, R. Urban heat stress mitigation potential of green walls: A review. Urban For. Urban Green. 2020, 55, 126843. [Google Scholar] [CrossRef]
- Liberalesso, T.; Oliveira Cruz, C.; Matos Silva, C.; Manso, M. Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Policy 2020, 96, 104693. [Google Scholar] [CrossRef]
- Radić, M.; Brković Dodig, M.; Auer, T. Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits. Sustainability 2019, 11, 4579. [Google Scholar] [CrossRef] [Green Version]
- Rady, M.; Mahfouz, S.Y. Effects of Concrete Grades and Column Spacings on the Optimal Design of Reinforced Concrete Buildings. Materials 2022, 15, 4290. [Google Scholar] [CrossRef]
- Mahdiyar, A.; Tabatabaee, S.; Sadeghifam, A.N.; Mohandes, S.R.; Abdullah, A.; Meynagh, M.M. Probabilistic private cost-benefit analysis for green roof installation: A Monte Carlo simulation approach. Urban For. Urban Green. 2016, 20, 317–327. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, Z.; Long, Z. Significant barriers to green procurement in real estate development. Resour. Conserv. Recycl. 2017, 116, 160–168. [Google Scholar] [CrossRef]
- Rady, M.; Mahfouz, S.Y.; Taher, S.E.-D.F. Optimal Design of Reinforced Concrete Materials in Construction. Materials 2022, 15, 2625. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lai, A.; Lau, K.K.-L.; Ng, E. Thermal benefits of vertical greening in a high-density city: Case study of Hong Kong. Urban For. Urban Green. 2019, 37, 42–55. [Google Scholar] [CrossRef]
- Ascione, F.; De Masi, R.F.; Mastellone, M.; Ruggiero, S.; Vanoli, G.P. Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches. Energies 2020, 13, 2296. [Google Scholar] [CrossRef]
- Riley, B. The state of the art of living walls: Lessons learned. Build. Environ. 2017, 114, 219–232. [Google Scholar] [CrossRef]
- Rosasco, P.; Perini, K. Evaluating the economic sustainability of a vertical greening system: A Cost-Benefit Analysis of a pilot project in mediterranean area. Build. Environ. 2018, 142, 524–533. [Google Scholar] [CrossRef]
- Oke, A.; Aghimien, D.; Olatunji, S. Implementation of value management as an economic sustainability tool for building construction in Nigeria. Int. J. Manag. Value Supply Chain. 2015, 6, 55–64. [Google Scholar]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Zayed, T. Exploring the value management critical success factors for sustainable residential building—A structural equation modelling approach. J. Clean. Prod. 2021, 293, 126115. [Google Scholar] [CrossRef]
- Aarseth, W.; Ahola, T.; Aaltonen, K.; Økland, A.; Andersen, B. Project sustainability strategies: A systematic literature review. Int. J. Proj. Manag. 2017, 35, 1071–1083. [Google Scholar] [CrossRef]
- Martens, M.L.; Carvalho, M.M. Key factors of sustainability in project management context: A survey exploring the project managers’ perspective. Int. J. Proj. Manag. 2017, 35, 1084–1102. [Google Scholar] [CrossRef]
- Abidin, N.Z.; Pasquire, C.L. Revolutionize value management: A mode towards sustainability. Int. J. Proj. Manag. 2007, 25, 275–282. [Google Scholar] [CrossRef]
- Fewings, P.; Henjewele, C. Construction Project Management: An Integrated Approach; Routledge: Abingdon, UK, 2019. [Google Scholar]
- Hartmann, T.; Van Meerveld, H.; Vossebeld, N.; Adriaanse, A. Aligning building information model tools and construction management methods. Autom. Constr. 2012, 22, 605–613. [Google Scholar] [CrossRef]
- Halpin, D.; Woodhead, R. Construction Management; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Zhang, J.; Hu, Z. BIM-and 4D-based integrated solution of analysis and management for conflicts and structural safety problems during construction: 1. Principles and methodologies. Autom. Constr. 2011, 20, 155–166. [Google Scholar] [CrossRef]
- Sassi, P. Strategies for Sustainable Architecture; Taylor & Francis: Abingdon, UK, 2006. [Google Scholar]
- Eastman, C.M.; Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Azhar, S.; Carlton, W.A.; Olsen, D.; Ahmad, I. Building information modeling for sustainable design and LEED® rating analysis. Autom. Constr. 2011, 20, 217–224. [Google Scholar] [CrossRef]
- Wong, K.d.; Fan, Q. Building information modelling (BIM) for sustainable building design. Facilities 2013, 31, 138–157. [Google Scholar] [CrossRef]
- Azhar, S.; Brown, J.; Farooqui, R. BIM-Based Sustainability Analysis: An Evaluation of Building Performance Analysis Software, Proceedings of the 45th ASC Annual Conference, 2009; Citeseer: Princeton, NJ, USA, 2009; pp. 276–292. [Google Scholar]
- Soltani, S. The contributions of building information modelling to sustainable construction. World J. Eng. Technol. Soc. 2016, 4, 193. [Google Scholar] [CrossRef]
- Manso, M.; Teotónio, I.; Silva, C.M.; Cruz, C.O. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev. 2021, 135, 110111. [Google Scholar] [CrossRef]
- Manso, M.; Castro-Gomes, J. Green wall systems: A review of their characteristics. Renew. Sustain. Energy Rev. 2015, 41, 863–871. [Google Scholar] [CrossRef]
- Vox, G.; Blanco, I.; Schettini, E. Green façades to control wall surface temperature in buildings. Build. Environ. 2018, 129, 154–166. [Google Scholar] [CrossRef]
- Wood, A.; Bahrami, P.; Safarik, D. Green Walls in High-Rise Buildings: An Output of the CTBUH Sustainability Working Group; Images Publishing: Alfreton, UK, 2014. [Google Scholar]
- Perini, K.; Ottelé, M.; Haas, E.M.; Raiteri, R. Vertical greening systems, a process tree for green façades and living walls. Urban Ecosyst. 2013, 16, 265–277. [Google Scholar] [CrossRef]
- Zakeri, S.M.; Mahdiyar, A. The Hindrances to Green Roof Adoption in a Semi-Arid Climate Condition. Sustainability 2020, 12, 9542. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Haas, E.M.; Raiteri, R. Greening the building envelope, facade greening and living wall systems. Open J. Ecol. 2011, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Terblanché-Greeff, A.C. Ubuntu and Environmental Ethics: The West Can Learn from Africa When Faced with Climate Change. In African Environmental Ethics: A Critical Reader; Chemhuru, M., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 93–109. [Google Scholar]
- Chiquet, C.; Dover, J.W.; Mitchell, P. Birds and the urban environment: The value of green walls. Urban Ecosyst. 2013, 16, 453–462. [Google Scholar] [CrossRef]
- Fleck, R.; Gill, R.L.; Pettit, T.; Irga, P.J.; Williams, N.L.R.; Seymour, J.R.; Torpy, F.R. Characterization of fungal and bacterial dynamics in an active green wall used for indoor air pollutant removal. Build. Environ. 2020, 179, 106987. [Google Scholar] [CrossRef]
- Daoud, A.O.; Omar, H.; Othman AA, E.; Ebohon, O.J. Integrated Framework Towards Construction Waste Reduction: The Case of Egypt. Int. J. Civil Eng. 2023, 1–15. [Google Scholar] [CrossRef]
- Pérez, G.; Rincón, L.; Vila, A.; González, J.M.; Cabeza, L.F. Green vertical systems for buildings as passive systems for energy savings. Appl. Energy 2011, 88, 4854–4859. [Google Scholar] [CrossRef]
- Hopkins, G.; Goodwin, C. Living Architecture: Green Roofs and Walls; Csiro Publishing: Clayton, Australia, 2011. [Google Scholar]
- Ottelé, M.; Perini, K.; Fraaij, A.L.A.; Haas, E.M.; Raiteri, R. Comparative life cycle analysis for green façades and living wall systems. Energy Build. 2011, 43, 3419–3429. [Google Scholar] [CrossRef]
- Bongaerts, P.; Ridgway, T.; Sampayo, E.M.; Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 2010, 29, 309–327. [Google Scholar] [CrossRef]
- Kontoleon, K.J.; Eumorfopoulou, E.A. The effect of the orientation and proportion of a plant-covered wall layer on the thermal performance of a building zone. Build. Environ. 2010, 45, 1287–1303. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Martorell, I.; Cabeza, L.F. Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renew. Sustain. Energy Rev. 2014, 39, 139–165. [Google Scholar] [CrossRef] [Green Version]
- Othman, I.; Kineber, A.; Oke, A.; Zayed, T.; Buniya, M. Barriers of value management implementation for building projects in Egyptian construction industry. Ain Shams Eng. J. 2021, 12, 21–30. [Google Scholar] [CrossRef]
- Buniya, M.K.; Othman, I.; Sunindijo, R.Y.; Kineber, A.F.; Mussi, E.; Ahmad, H. Barriers to safety program implementation in the construction industry. Ain Shams Eng. J. 2021, 12, 65–72. [Google Scholar] [CrossRef]
- Olanrewaju, O.I.; Kineber, A.F.; Chileshe, N.; Edwards, D.J. Modelling the Impact of Building Information Modelling (BIM) Implementation Drivers and Awareness on Project Lifecycle. Sustainability 2021, 13, 8887. [Google Scholar] [CrossRef]
- Saunders, M.; Lewis, P.; Thornhill, A. Research Methods for Business Students, 6th ed.; Pearson: London, UK, 2012. [Google Scholar]
- Buniya, M.K.; Othman, I.; Durdyev, S.; Sunindijo, R.Y.; Ismail, S.; Kineber, A.F. Safety Program Elements in the Construction Industry: The Case of Iraq. Int. J. Environ. Res. Public Health 2021, 18, 411. [Google Scholar] [CrossRef]
- Oke, A.E.; Kineber, A.F.; Akindele, O.; Ekundayo, D. Determining the Stationary Barriers to the implementation of Radio Frequency Identification (RFID) technology in an emerging construction industry. J. Eng. Des. Technol. 2023, in press.
- Williams, B.; Onsman, A.; Brown, T. Exploratory factor analysis: A five-step guide for novices. Australas. J. Paramed. 2010, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Thompson, B. Exploratory and confirmatory factor analysis: Understanding concepts and applications. Appl. Psychol. Meas. 2007, 31, 245–248. [Google Scholar]
- Oke, A.E.; Kineber, A.F.; Albukhari, I.; Othman, I.; Kingsley, C. Assessment of Cloud Computing Success Factors for Sustainable Construction Industry: The Case of Nigeria. Buildings 2021, 11, 36. [Google Scholar] [CrossRef]
- Costello, A.B.; Osborne, J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 2005, 10, 7. [Google Scholar]
- Oke, A.E.; Kineber, A.F.; Al-Bukhari, I.; Famakin, I.; Kingsley, C. Exploring the benefits of cloud computing for sustainable construction in Nigeria. J. Eng. Des. Technol. Soc. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2007; Volume 5. [Google Scholar]
- Robert, O.K.; Dansoh, A.; Ofori–Kuragu, J.K. Reasons for adopting public–private partnership (PPP) for construction projects in Ghana. Int. J. Constr. Manag. 2014, 14, 227–238. [Google Scholar] [CrossRef]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Banihashemi, S.; Hosseini, M.R.; Golizadeh, H.; Sankaran, S. Critical success factors (CSFs) for integration of sustainability into construction project management practices in developing countries. Int. J. Proj. Manag. 2017, 35, 1103–1119. [Google Scholar] [CrossRef]
- Lee, C.; Hallak, R. Investigating the moderating role of education on a structural model of restaurant performance using multi-group PLS-SEM analysis. J. Bus. Res. 2018, 88, 298–305. [Google Scholar] [CrossRef]
- Hult, G.T.M.; Hair Jr, J.F.; Proksch, D.; Sarstedt, M.; Pinkwart, A.; Ringle, C.M. Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. J. Int. Mark. 2018, 26, 1–21. [Google Scholar] [CrossRef]
- Kineber, A.F.; Kissi, E.; Hamed, M.M. Identifying and Assessing Sustainability Implementation Barriers for Residential Building Project: A Case of Ghana. Sustainability 2022, 14, 15606. [Google Scholar] [CrossRef]
- Hair Jr, J.F.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated guidelines on which method to use. Int. J. Multivar. Data Anal. 2017, 1, 107–123. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.J.; Cote, J.A.; Buckley, M.R. Lack of method variance in self-reported affect and perceptions at work: Reality or artifact? J. Appl. Psychol. 1989, 74, 462. [Google Scholar] [CrossRef]
- Strandholm, K.; Kumar, K.; Subramanian, R. Examining the interrelationships among perceived environmental change, strategic response, managerial characteristics, and organizational performance. J. Bus. Res. 2004, 57, 58–68. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; Organ, D.W. Self-reports in organizational research: Problems and prospects. J. Manag. 1986, 12, 531–544. [Google Scholar] [CrossRef]
- Al-Ashmori, Y.Y.; Othman, I.; Rahmawati, Y.; Amran, Y.M.; Sabah, S.A.; Rafindadi, A.D.u.; Mikić, M. BIM benefits and its influence on the BIM implementation in Malaysia. Ain Shams Eng. J. 2020, 11, 1013–1019. [Google Scholar] [CrossRef]
- Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strateg. Manag. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Nunnally, J.C.; Bernstein, I. The role of university in the development of entrepreneurial vocations: A Spanish study. In Psychometric Theory; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Wong, K.K.-K. Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Mark. Bull. 2013, 24, 1–32. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Babin, B.J.; Black, W.C. Multivariate Data Analysis: A Global Perspective; Pearson: Upper Saddle River, NJ, USA, 2010; Volume 7. [Google Scholar]
- Campbell, D.T.; Fiske, D.W. Convergent and discriminant validation by the multitrait-multimethod matrix. Psychol. Bull. 1959, 56, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkilani, S.G.R.Z. Performance Measurement and Improvement Model for Small and Medium Contractors in Developing Countries. Ph.D. Thesis, School of Construction Management and Property, University of New South Wales, Kensington, Australia, 2018. [Google Scholar]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Alsolami, B. Critical Value Management Activities in Building Projects: A Case of Egypt. Buildings 2020, 10, 239. [Google Scholar] [CrossRef]
- Al-Mekhlafi, A.-B.A.; Isha, A.S.N.; Chileshe, N.; Abdulrab, M.; Kineber, A.F.; Ajmal, M. Impact of Safety Culture Implementation on Driving Performance among Oil and Gas Tanker Drivers: A Partial Least Squares Structural Equation Modelling (PLS-SEM) Approach. Sustainability 2021, 13, 8886. [Google Scholar] [CrossRef]
- Kineber, A.F.; Siddharth, S.; Chileshe, N.; Alsolami, B.; Hamed, M.M. Addressing of Value Management Implementation Barriers within the Indian Construction Industry: A PLS-SEM Approach. Sustainability 2022, 14, 16602. [Google Scholar] [CrossRef]
- Sharma, S. Applied Multivariate Techniques; John Wiley Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53. [Google Scholar] [CrossRef] [PubMed]
- Harman, H.H. Modern Factor Analysis; University of Chicago: Chicago, IL, USA, 1967. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Shah, R.; Goldstein, S.M. Use of structural equation modeling in operations management research: Looking back and forward. J. Oper. Manag. 2006, 24, 148–169. [Google Scholar] [CrossRef]
- Shook, C.L.; Ketchen, D.J., Jr.; Hult, G.T.M.; Kacmar, K.M. An assessment of the use of structural equation modeling in strategic management research. Strateg. Manag. J. 2004, 25, 397–404. [Google Scholar] [CrossRef]
- Chin, W.W.; Newsted, P.R. Structural equation modeling analysis with small samples using partial least squares. Stat. Strateg. Small Sample Res. 1999, 1, 307–341. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Daoud, A.O.; Othman AA, E.; Ebohon, O.J.; Bayyati, A. Overcoming the limitations of the green pyramid rating system in the Egyptian construction industry: A critical analysis. Architec. Eng. Des. Manag. 2022, 18, 114–127. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Buniya, M.K. Impact of Value Management on Building Projects Success: Structural Equation Modeling Approach. J. Constr. Eng. Manag. 2021, 147, 04021011. [Google Scholar] [CrossRef]
- Kineber, A.F.; Oke, A.E.; Hamed, M.M.; Rached, E.F.; Elmansoury, A.; Alyanbaawi, A. A Partial Least Squares Structural Equation Modeling of Robotics Implementation for Sustainable Building Projects: A Case in Nigeria. Sustainability 2023, 15, 604. [Google Scholar] [CrossRef]
- Chin, W.W. Commentary: Issues and Opinion on Structural Equation Modeling; JSTOR: New York, NY, USA, 1998. [Google Scholar]
- Adabre, M.A.; Chan, A.P.; Edwards, D.J.; Adinyira, E. Assessing Critical Risk Factors (CRFs) to Sustainable Housing: The Perspective of a sub-Saharan African Country. J. Build. Eng. 2021, 41, 102385. [Google Scholar] [CrossRef]
- Suprapto, M.; Bakker, H.L.; Mooi, H.G.; Hertogh, M.J. How do contract types and incentives matter to project performance? Int. J. Proj. Manag. 2016, 34, 1071–1087. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power for the Behavioural Sciences; Lawrence Erlbaum: Hilsdale, NY, USA, 1988. [Google Scholar]
- Al-Mekhlafi, A.-B.A.; Isha, A.S.N.; Chileshe, N.; Abdulrab, M.; Saeed, A.A.H.; Kineber, A.F. Modelling the Relationship between the Nature of Work Factors and Driving Performance Mediating by Role of Fatigue. Int. J. Environ. Res. Public Health 2021, 18, 6752. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.W.Y.; Hao, J.L.; Zeng, S.X. What affects implementation of green buildings? An empirical study in Hong Kong. Int. J. Strateg. Prop. Manag. 2012, 16, 115–125. [Google Scholar] [CrossRef]
- Samari, M.; Godrati, N.; Esmaeilifar, R.; Olfat, P.; Shafiei, M.W.M. The investigation of the barriers in developing green building in Malaysia. Mod. Appl. Sci. 2013, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Bandy, R.; Danckaert, C.; Fetscher, G.; Holmes, B.; Gale, M.; Mirsky, M.; Stewart, S. Leed in upstate New York: An exploration of barriers, resources and strategies. USGBC New York Upstate Chapter Environ. Financ. Cent. EPA Reg. 2007, 2, 2007. [Google Scholar]
- ISMAIL, ELHASSAN REDA MOHAMED ABDULLAH. Towards Automated Construction for Safe Disposal of Materials Waste in the Egyptian Construction Industry. Ph.D. Thesis, Faculty of Engineering, The British University in Egypt, El Sherouk City, Egypt, 2022. [Google Scholar]
- Hwang, B.-G.; Ng, W.J. Project management knowledge and skills for green construction: Overcoming challenges. Int. J. Proj. Manag. 2013, 31, 272–284. [Google Scholar] [CrossRef]
- Alrashed, F.; Asif, M. Prospects of renewable energy to promote zero-energy residential buildings in the KSA. Energy Procedia 2012, 18, 1096–1105. [Google Scholar] [CrossRef] [Green Version]
- Iwaro, J.; Mwasha, A. A review of building energy regulation and policy for energy conservation in developing countries. Energy Policy 2010, 38, 7744–7755. [Google Scholar] [CrossRef]
- Duda, J. Incentives and Barriers Impacting the Implementation of Green Building Exteriors. Bachelor’s Thesis, University of New South Wales, Kensington, Australia, 2009. Unpublished. [Google Scholar]
- Hasan, M.S.; Zhang, R.-J. Critical barriers and challenges in implementation of green construction in China. Int. J. Curr. Eng. Technol. 2016, 6, 435–445. [Google Scholar]
- Turner Construction Company. Green building market barometer. Retrieved Sept. 2008, 15, 2009. [Google Scholar]
- McGraw-Hill, C.; Council, U.S.G.B. Green Building Smartmarket Report; McGraw Hill Construction in conjunction with US Green Building Council: Irvine, CA, USA, 2006. [Google Scholar]
- Qian, Q.K.; Chan, E.H.W.; Khalid, A.G. Challenges in delivering green building projects: Unearthing the transaction costs (TCs). Sustainability 2015, 7, 3615–3636. [Google Scholar] [CrossRef] [Green Version]
- Ahn, Y.H.; Pearce, A.R.; Wang, Y.; Wang, G. Drivers and barriers of sustainable design and construction: The perception of green building experience. Int. J. Sustain. Build. Technol. Urban Dev. 2013, 4, 35–45. [Google Scholar] [CrossRef]
- Mosly, I. Barriers to the diffusion and adoption of green buildings in Saudi Arabia. J. Mgmt. Sustain. 2015, 5, 104. [Google Scholar] [CrossRef]
- Latief, Y.; Berawi, M.A.; Basten, V.; Budiman, R.; Riswanto. Premium Cost Optimization of Operational and Maintenance of Green Building in Indonesia Using Life Cycle Assessment Method; AIP Publishing LLC: Melville, NY, USA, 2017; p. 020007. [Google Scholar]
- Sabini, L.; Alderman, N. The paradoxical profession: Project management and the contradictory nature of sustainable project objectives. Proj. Manag. J. 2021, 52, 379–393. [Google Scholar] [CrossRef]
- Zhang, X.; Platten, A.; Shen, L. Green property development practice in China: Costs and barriers. Build. Environ. 2011, 46, 2153–2160. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, L.; Wu, Y. Green strategy for gaining competitive advantage in housing development: A China study. J. Clean. Prod. 2011, 19, 157–167. [Google Scholar] [CrossRef]
Code | Barriers | Studies |
---|---|---|
B1 | Adaptability to climate | [49] |
B2 | Great ecological liability of some materials | [50] |
B3 | High cost of maintenance | [20] |
B4 | High cost of installation | [43] |
B5 | Hi-tech application | [48] |
B6 | High nutrients and water consumption | [44] |
B7 | Hesitation to accept a novel technology | [47] |
B8 | The dearth of standards and policy | [47] |
B9 | The dearth of printed costs specified in the recommendations | [44] |
B10 | Inadequate lightening for the flowers | [51] |
B11 | Potential harm to the back fence | [38] |
B12 | Scarcity of methodological tools | [19] |
B13 | The requirement for skilled engineers | [19] |
B14 | Fire inducement | [38] |
B15 | Susceptibility of insects and fungi | [46] |
B16 | Little or lack of incentives from regulators or the government | [12] |
B17 | Maintenance difficulty | [52,53] |
Barriers | Component | |||
---|---|---|---|---|
Environment | Policy and Standards | Technical | Guidelines | |
B1 | 0.881 | |||
B2 | 0.600 | |||
B3 | 0.751 | |||
B4 | 0.764 | |||
B5 | 0.825 | |||
B6 | 0.749 | |||
B7 | 0.588 | |||
B8 | 0.797 | |||
B9 | 0.611 | |||
B10 | 0.852 | |||
B11 | 0.753 | |||
B12 | 0.759 | |||
B13 | 0.694 | |||
B14 | 0.819 | |||
B15 | 0.809 | |||
B16 | 0.744 | |||
B17 | 0.902 |
Constructs | Cronbach’s Alpha | Composite Reliability | Average Variance Extracted (AVE) |
---|---|---|---|
Environment | 0.765 | 0.863 | 0.678 |
Green walls implementation barriers | 0.947 | 0.954 | 0.552 |
Guidelines | 0.789 | 0.904 | 0.826 |
OSS | 0.824 | 0.893 | 0.735 |
Policy and standards | 0.867 | 0.938 | 0.883 |
Technical | 0.953 | 0.959 | 0.703 |
Constructs | Environment | Guidelines | OSS | Policy and Standards | Technical |
---|---|---|---|---|---|
Environment | 0.823 | ||||
Guidelines | 0.502 | 0.909 | |||
OSS | 0.148 | 0.298 | 0.857 | ||
Policy and standards | 0.576 | 0.619 | 0.125 | 0.94 | |
Technical | 0.634 | 0.604 | 0.35 | 0.513 | 0.838 |
Constructs | Environment | Guidelines | OSS | Policy and Standards | Technical |
---|---|---|---|---|---|
Environment | |||||
Guidelines | 0.633 | ||||
OSS | 0.192 | 0.375 | |||
Policy and standards | 0.665 | 0.739 | 0.161 | ||
Technical | 0.724 | 0.694 | 0.378 | 0.564 |
Barriers | Guidelines | Environment | Policy and Standards | Technical | OSS |
---|---|---|---|---|---|
B9 | 0.919 | 0.556 | 0.668 | 0.555 | 0.336 |
B5 | 0.898 | 0.345 | 0.446 | 0.543 | 0.198 |
B1 | 0.374 | 0.793 | 0.206 | 0.395 | 0.08 |
B2 | 0.571 | 0.836 | 0.61 | 0.543 | 0.169 |
B7 | 0.287 | 0.84 | 0.535 | 0.598 | 0.106 |
B17 | 0.543 | 0.425 | 0.935 | 0.484 | 0.134 |
B8 | 0.618 | 0.649 | 0.944 | 0.481 | 0.102 |
B10 | 0.55 | 0.435 | 0.381 | 0.872 | 0.229 |
B11 | 0.57 | 0.563 | 0.332 | 0.836 | 0.195 |
B12 | 0.491 | 0.68 | 0.457 | 0.858 | 0.281 |
B13 | 0.603 | 0.531 | 0.439 | 0.819 | 0.392 |
B14 | 0.435 | 0.537 | 0.324 | 0.854 | 0.364 |
B15 | 0.58 | 0.573 | 0.553 | 0.909 | 0.356 |
B16 | 0.4 | 0.404 | 0.573 | 0.782 | 0.294 |
B3 | 0.383 | 0.455 | 0.315 | 0.762 | 0.183 |
B4 | 0.568 | 0.598 | 0.493 | 0.882 | 0.343 |
B6 | 0.458 | 0.515 | 0.42 | 0.799 | 0.284 |
Economic | 0.352 | −0.021 | 0.125 | 0.246 | 0.813 |
Environment | 0.256 | 0.202 | 0.04 | 0.379 | 0.86 |
Social | 0.162 | 0.165 | 0.184 | 0.244 | 0.897 |
Path | Outer Weight (β) | SE | VIF |
---|---|---|---|
Environment→ Green walls implementation barriers | 0.3207 | 0.0343 | 1.95 |
Guidelines→ Green walls implementation barriers | 0.2446 | 0.0462 | 1.981 |
Policy and standards→ Green walls implementation barriers | 0.4594 | 0.0467 | 1.916 |
Technical→ Green walls implementation barriers | 0.2628 | 0.0326 | 2.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kineber, A.F.; Oke, A.E.; Hamed, M.M.; Rached, E.F.; Elmansoury, A. Modeling the Impact of Overcoming the Green Walls Implementation Barriers on Sustainable Building Projects: A Novel Mathematical Partial Least Squares—SEM Method. Mathematics 2023, 11, 504. https://doi.org/10.3390/math11030504
Kineber AF, Oke AE, Hamed MM, Rached EF, Elmansoury A. Modeling the Impact of Overcoming the Green Walls Implementation Barriers on Sustainable Building Projects: A Novel Mathematical Partial Least Squares—SEM Method. Mathematics. 2023; 11(3):504. https://doi.org/10.3390/math11030504
Chicago/Turabian StyleKineber, Ahmed Farouk, Ayodeji Emmanuel Oke, Mohammed Magdy Hamed, Ehab Farouk Rached, and Ali Elmansoury. 2023. "Modeling the Impact of Overcoming the Green Walls Implementation Barriers on Sustainable Building Projects: A Novel Mathematical Partial Least Squares—SEM Method" Mathematics 11, no. 3: 504. https://doi.org/10.3390/math11030504
APA StyleKineber, A. F., Oke, A. E., Hamed, M. M., Rached, E. F., & Elmansoury, A. (2023). Modeling the Impact of Overcoming the Green Walls Implementation Barriers on Sustainable Building Projects: A Novel Mathematical Partial Least Squares—SEM Method. Mathematics, 11(3), 504. https://doi.org/10.3390/math11030504