On a Linear Differential Game in the Hilbert Space ℓ2
Abstract
:1. Introduction and Statement of the Problem
2. Main Results
3. Existence and Uniqueness
3.1. Estimate for
3.2. Proof of Theorem 1
4. Proof of Theorem 2
4.1. Asymptotic Stability
4.2. Gramians
4.3. Null Controllability in Large
4.4. Time Optimal Control
5. Differential Game Problem: Proof of Theorem 3
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chernous’ko, F.L. Decomposition and suboptimal control in dynamical systems. J. Appl. Math. Mech. 1990, 54, 727–734. [Google Scholar] [CrossRef]
- Chernous’ko, F.L. Bounded controls in distributed-parameter systems. J. Appl. Math. Mech. 1992, 56, 707–723. [Google Scholar] [CrossRef]
- Chernous’ko, F.L. Decomposition and synthesis of control in nonlinear dynamical systems. Trudy Mat. Inst. Steklov. 1995, 211, 457–472. [Google Scholar]
- Azamov, A.A.; Ruziboev, M.B. The time-optimal problem for evolutionary partial differential equations. J. Appl. Math. Mech. 2013, 77, 220–224. [Google Scholar] [CrossRef]
- Azamov, A.A.; Bakhramov, J.A.; Akhmedov, O.S. On the Chernous’ko time-optimal problem for the equation of heat conductivity in a rod. Ural Math. J. 2019, 5, 13–23. [Google Scholar] [CrossRef]
- Albeverio, S.; Alimov, S.A. On a time-optimal control problem associated with the heat exchange process. Appl. Math. Optim. 2008, 57, 58–68. [Google Scholar] [CrossRef]
- Agrachev, A.A.; Sarychev, A.V. Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing. Commun. Math. Phys. 2006, 265, 673–697. [Google Scholar] [CrossRef]
- Badra, M.; Takahasi, T. On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems. ESAIM Control Optim. Calc. Var. 2014, 20, 924–956. [Google Scholar] [CrossRef]
- Coron, J.; Xiang, S. Small-time global stabilization of the viscous Burgers equation with three scalar controls. J. Math. Pures Appl. 2021, 151, 212–256. [Google Scholar] [CrossRef]
- Coron, J. Control and Nonlinearity; Mathematical Surveys and Monographs, 136; American Mathematical Society: Providence, RI, USA, 2007; pp. xiv+426. [Google Scholar]
- Deimling, K. Ordinary Differential Equations in Banach Spaces; Lecture Notes in Mathematics; Springer: New York, NY, USA, 1977; Volume 596. [Google Scholar]
- Curtain, R.F.; Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory; Springer: New York, NY, USA, 1995; pp. xviii+698. [Google Scholar]
- Azamov, A.A.; Ibragimov, G.I.; Mamayusupov, K.; Ruziboev, M. On the Stability and Null-Controllability of an Infinite System of Linear Differential Equations. J. Dyn. Control Syst. 2023, 29, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Tukhtasinov, M.; Mamatov, M.S. On Pursuit Problems in Controlled Distributed Parameters Systems. Math. Notes 2008, 84, 256–262. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. On Some Game Problems for First-Order Controlled Evolution Equations. Differ. Equ. 2005, 41, 1169–1177. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. On Game Problems for Second-Order Evolution Equations. Russ. Math. 2007, 51, 49–57. [Google Scholar] [CrossRef]
- Ibragimov, G.I. Optimal pursuit time for a differential game in the Hilbert space l2. Sci. Asia 2013, 39S, 25–30. [Google Scholar] [CrossRef]
- Ibragimov, G.I.; Ferrara, M.; Ruziboev, M.; Pansera, B.A. Linear evasion differential game of one evader and several pursuers with integral constraints. Int. J. Game Theory 2021, 50, 729–750. [Google Scholar] [CrossRef]
- Ibragimov, G.I. Evasion Differential Game of One Evader and Many Slow Pursuers. Dyn. Games Appl. 2023. [Google Scholar] [CrossRef]
- Kuchkarov, A.S.; Ibragimov, G.I.; Ferrara, M. Simple motion pursuit and evasion differential games with many pursuers on manifolds with Euclidean metric. Discret. Dyn. Nat. Soc. 2016, 2016, 1386242. [Google Scholar] [CrossRef]
- Daletskii, A.; Finkelshtein, D. Non-equilibrium particle dynamics with unbounded number of interacting neighbors. (English summary). J. Stat. Phys. 2008, 173, 1639–1659. [Google Scholar] [CrossRef]
- Demidovič, B.P. Lektsii po Matematicheskoĭ Teorii Ustoĭchivosti; Izdat; Nauka: Moscow, Russia, 1967; p. 472. [Google Scholar]
- Lee, E.B.; Markus, L. Foundations of Optimal Control Theory; John Wiley & Sons, Inc.: New York, NY, USA; London, UK; Sydney, Australia, 1967; pp. x+576. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruziboev, M.; Ibragimov, G.; Mamayusupov, K.; Khaitmetov, A.; Pansera, B.A. On a Linear Differential Game in the Hilbert Space ℓ2. Mathematics 2023, 11, 4987. https://doi.org/10.3390/math11244987
Ruziboev M, Ibragimov G, Mamayusupov K, Khaitmetov A, Pansera BA. On a Linear Differential Game in the Hilbert Space ℓ2. Mathematics. 2023; 11(24):4987. https://doi.org/10.3390/math11244987
Chicago/Turabian StyleRuziboev, Marks, Gafurjan Ibragimov, Khudoyor Mamayusupov, Adkham Khaitmetov, and Bruno Antonio Pansera. 2023. "On a Linear Differential Game in the Hilbert Space ℓ2" Mathematics 11, no. 24: 4987. https://doi.org/10.3390/math11244987
APA StyleRuziboev, M., Ibragimov, G., Mamayusupov, K., Khaitmetov, A., & Pansera, B. A. (2023). On a Linear Differential Game in the Hilbert Space ℓ2. Mathematics, 11(24), 4987. https://doi.org/10.3390/math11244987