Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions Associated with Lucas-Balancing Polynomials
Abstract
:1. Introduction
2. Coefficient Bounds of the Class
3. Fekete–Szegö Functional Estimations of the Class
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Behera, A.; Panda, G.K. On the square roots of triangular numbers. Fibonacci Q. 1999, 37, 98–105. [Google Scholar]
- Davala, R.K.; Panda, G.K. On sum and ratio formulas for balancing numbers. J. Ind. Math. Soc. 2015, 82, 23–32. [Google Scholar]
- Frontczak, R.; Baden-Württemberg, L. A note on hybrid convolutions involving balancing and Lucas-balancing numbers. Appl. Math. Sci. 2018, 12, 2001–2008. [Google Scholar] [CrossRef]
- Frontczak, R.; Baden-Württemberg, L. Sums of balancing and Lucas-balancing numbers with binomial coefficients. Int. J. Math. Anal. 2018, 12, 585–594. [Google Scholar] [CrossRef]
- Komatsu, T.; Panda, G.K. On several kinds of sums of balancing numbers. arXiv 2016, arXiv:1608.05918. [Google Scholar]
- Panda, G.K.; Komatsu, T.; Davala, R.K. Reciprocal sums of sequences involving balancing and lucas-balancing numbers. Math. Rep. 2018, 20, 201–214. [Google Scholar]
- Patel, B.K.; Irmak, N.; Ray, P.K. Incomplete balancing and Lucas-balancing numbers. Math. Rep. 2018, 20, 59–72. [Google Scholar]
- Ray, P.K.; Sahu, J. Generating functions for certain balancing and lucas-balancing numbers. Palest. J. Math. 2016, 5, 122–129. [Google Scholar]
- Ray, P.K. Balancing and Lucas-balancing sums by matrix methods. Math. Rep. 2015, 17, 225–233. [Google Scholar]
- Bérczes, A.; Liptai, K.; Pink, I. On generalized balancing sequences. Fibonacci Q. 2010, 48, 121–128. [Google Scholar]
- Liptai, K.; Florian, L.; Ákos, P.; László, S. Generalized balancing numbers. Indag. Math. 2009, 20, 87–100. [Google Scholar] [CrossRef]
- Frontczak, R. On balancing polynomials. Appl. Math. Sci. 2019, 13, 57–66. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordination: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Duren, P.L. Grundlehren der Mathematischen Wissenchaffen; Univalent Functions: New York, NY, USA; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
- Hussen, A.; Zeyani, A. Coefficients and Fekete–Szegö Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials. Mathematics 2023, 11, 2852. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind. Boletín de la Sociedad Matemática Mexicana 2020, 26, 329–339. [Google Scholar] [CrossRef]
- Illafe, M.; Amourah, A.; Haji Mohd, M. Coefficient estimates and Fekete–Szegö functional inequalities for a certain subclass of analytic and bi-univalent functions. Axioms 2022, 11, 147. [Google Scholar] [CrossRef]
- Illafe, M.; Yousef, F.; Mohd, M.H.; Supramaniam, S. Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination. Axioms 2023, 12, 235. [Google Scholar] [CrossRef]
- Yousef, F.B.; Frasin, A.; Tariq Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. Filomat 2018, 32, 3229–3236. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems. Anal. Math. Phys. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Yousef, F.; Amourah, A.; Aref Frasin, B.; Bulboacă, T. An avant-Garde construction for subclasses of analytic bi-univalent functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
- Aktaş, İ.; Karaman, İ. On some new subclasses of bi-univalent functions defined by Balancing polynomials. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 2023, 5, 25–32. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions. Symmetry 2022, 14, 147. [Google Scholar] [CrossRef]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F.; Aldawish, I. On subclasses of analytic functions associated with Struve functions. Nonlinear Funct. Anal. Appl. 2022, 27, 99–110. [Google Scholar]
- Frasin, B.A.; Tariq Al-Hawary, T.; Yousef, F. Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions. Afr. Mat. 2019, 30, 223–230. [Google Scholar] [CrossRef]
- Frasin, B.A.; Porwal, S.; Yousef, F. Subclasses of starlike and convex functions associated with Mittag-Leffler-type Poisson distribution series. Montes Taurus J. Pure Appl. Math. 2021, 3, 147–154. [Google Scholar]
- Al-Hawary, T. Coefficient bounds and Fekete–Szegö problem for qualitative subclass of bi-univalent functions. Afr. Mat. 2022, 33, 28. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Aldawish, I.; Frasin, B.A.; Alkam, O.; Yousef, F. Necessary and Sufficient Conditions for Normalized Wright Functions to be in Certain Classes of Analytic Functions. Mathematics 2022, 10, 4693. [Google Scholar] [CrossRef]
- Yousef, A.; Salleh, T.Z.; Tariq Al-Hawary, T. Coefficient estimates for subclasses (α,λ) and (β,λ) of analytic and bi-univalent functions defined by a differential operator. Ital. J. Pure Appl. Math. 2022, 47, 70–78. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussen, A.; Illafe, M. Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions Associated with Lucas-Balancing Polynomials. Mathematics 2023, 11, 4941. https://doi.org/10.3390/math11244941
Hussen A, Illafe M. Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions Associated with Lucas-Balancing Polynomials. Mathematics. 2023; 11(24):4941. https://doi.org/10.3390/math11244941
Chicago/Turabian StyleHussen, Abdulmtalb, and Mohamed Illafe. 2023. "Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions Associated with Lucas-Balancing Polynomials" Mathematics 11, no. 24: 4941. https://doi.org/10.3390/math11244941
APA StyleHussen, A., & Illafe, M. (2023). Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions Associated with Lucas-Balancing Polynomials. Mathematics, 11(24), 4941. https://doi.org/10.3390/math11244941