Study of Non-Linear Impulsive Neutral Fuzzy Delay Differential Equations with Non-Local Conditions
Abstract
:1. Introduction
2. Preliminaries
3. Existence Results for First-Order System
3.1. Impulsive Functional Differential Equations
- (H1)
- There exists a constant ∋∀ and all , and
- (H2)
- If ℵ is continuous and there exists constants , ∋∀ and all
- (H3)
- ∃ a non-negative constant ∋, for each and
3.2. Impulsive Neutral Functional Differential Equations
- (H4)
- There exists a constant ∋∀ and allAnd
4. Existence Results for Second-Order System
4.1. Impulsive Functional Differential Equations
- (H5)
- There exists a non-negative constant ∋
4.2. Impulsive Neutral Functional Differential Equations
5. Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vengataasalam, S.; Ramesh, R. Existence of fuzzy solutions for impulsive semilinear differential equations with non-local condition. Int. J. Pure Appl. Math. 2014, 95, 297–308. [Google Scholar] [CrossRef]
- Lyu, W.; Wang, Z. Global classical solutions for a class of reaction-diffusion system with density-suppressed motility. Electron. Res. Arch. 2022, 30, 995–1015. [Google Scholar] [CrossRef]
- Shivakoti, I.; Pradhan, B.B.; Diyaley, S.; Ghadai, R.K.; Kalita, K. Fuzzy TOPSIS-based selection of laser beam micro-marking process parameters. Arab. J. Sci. Eng. 2017, 42, 4825–4831. [Google Scholar] [CrossRef]
- Guo, C.; Hu, J.; Hao, J.; Čelikovský, S.; Hu, X. Fixed-time safe tracking control of uncertain high-order non-linear pure-feedback systems via unified transformation functions. Kybernetika 2023, 59, 342–364. [Google Scholar] [CrossRef]
- Guo, C.; Hu, J.; Wu, Y.; Čelikovský, S. Non-Singular Fixed-Time Tracking Control of Uncertain Non-linear Pure-Feedback Systems With Practical State Constraints. IEEE Trans. Circuits Syst. I Regul. Pap. 2023. early access. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Mohapatra, R. Theory of Fuzzy Differential Equations and Inclusions; Taylor and Francis Publishers: London, UK, 2003. [Google Scholar]
- Hale, J.K.; Lunel, S.M.V. Introduction to Functional Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Zhong, Q.; Han, S.; Shi, K.; Zhong, S.; Kwon, O. Co-Design of Adaptive Memory Event-Triggered Mechanism and Aperiodic Intermittent Controller for Non-linear Networked Control Systems. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4979–4983. [Google Scholar] [CrossRef]
- Hale, J.K. A class of neutral equations with the fixed-point property. Proc. Nat. Acad. Sci. USA 1970, 67, 136–137. [Google Scholar] [CrossRef]
- Gyori, I.; Wu, I. A neutral equation arising from compartmental systems with pipes. J. Dyn. Diff. Equ. 1991, 3, 289–311. [Google Scholar] [CrossRef]
- Xu, S.; Dai, H.; Feng, L.; Chen, H.; Chai, Y.; Zheng, W.X. Fault Estimation for Switched Interconnected Non-linear Systems with External Disturbances via Variable Weighted Iterative Learning. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 2011–2015. [Google Scholar] [CrossRef]
- Balachandran, K.; Sakthivel, R. Existence of solutions of neutral functional integrodifferential equation in Banach spaces. Proc. Indian Acad. Sci. Math. Sci. 1999, 109, 325–332. [Google Scholar] [CrossRef]
- Balachandran, K.; Marshal, S.A. Existence of solutions of second order neutral functional differential equations. Tamkang J. Math. 1999, 30, 299–309. [Google Scholar] [CrossRef]
- Ma, Q.; Meng, Q.; Xu, S. Distributed Optimization for Uncertain High-Order Non-linear Multiagent Systems via Dynamic Gain Approach. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 4351–4357. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Wang, L.; She, A.; Xie, Y. The dynamics analysis of Gompertz virus disease model under impulsive control. Sci. Rep. 2023, 13, 10180. [Google Scholar] [CrossRef]
- Bansod, A.V.; Patil, A.P.; Kalita, K.; Deshmukh, B.D.; Khobragade, N. Fuzzy multicriteria decision-making-based optimal Zn–Al alloy selection in corrosive environment. Int. J. Mater. Res. 2020, 111, 953–963. [Google Scholar] [CrossRef]
- Kandel, A.; Byatt, W.J. Fuzzy differential equations. In Proceedings of the International Conferences On Cybernetics and Society, Tokyo, Japan, 3–7 November 1978; pp. 1213–1216. [Google Scholar]
- Mizumoto, M.; Tanaka, K. Some Properties of Fuzzy Numbers; North-Holland: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Madan, L.P.; Ralescu, D.A. Differentials of fuzzy functions. J. Math. Anal. Appl. 1983, 91, 552–558. [Google Scholar]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Hao, R.; Lu, Z.; Ding, H.; Chen, L. Orthogonal six-DOFs vibration isolation with tunable high-static-low-dynamic stiffness: Experiment and analysis. Int. J. Mech. Sci. 2022, 222, 107237. [Google Scholar] [CrossRef]
- Shanmugasundar, G.; Mahanta, T.K.; Čep, R.; Kalita, K. Novel fuzzy measurement alternatives and ranking according to the compromise solution-based green machining optimization. Processes 2022, 10, 2645. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, B. Impulsive Fractional Semilinear Integrodifferential Equations with Non-local Conditions. J. Funct. Spaces 2021, 2021, 9449270. [Google Scholar]
- Wang, F.; Wang, H.; Zhou, X.; Fu, R. A Driving Fatigue Feature Detection Method Based on Multifractal Theory. IEEE Sensors J. 2022, 22, 19046–19059. [Google Scholar] [CrossRef]
- Benchohra, M.; Ntouyas, S.K. Non-local Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces. J. Math. Anal. Appl. 2001, 258, 573–590. [Google Scholar] [CrossRef]
- Bellman, R.; Cooke, K. Differential Difference Equations; Academic Press: San Diego, CA, USA, 1963. [Google Scholar]
- Hale, J.K. Critical cases for neutral functional differential equations. J. Differ. Equ. 1971, 10, 59–82. [Google Scholar] [CrossRef]
- Hale, J.K.; Lunel, S.M.V. Introduction to Functional Differential Equations; Springer Science & Business Media: New York, NY, USA, 2013; Volume 99. [Google Scholar]
- Puri, M.L.; Ralescu, D.A.; Zadeh, L. Fuzzy random variables. In Readings in Fuzzy Sets for Intelligent Systems; Morgan Kaufmann: Burlington, MA, USA, 1993; pp. 265–271. [Google Scholar]
- Chalishajar, D.N.; Ramesh, R. Impulsive Fuzzy Solutions for Abstract Second Order Partial Neutral Functional Differential Equations. J. Appl. Pure Math. 2022, 4, 71–77. [Google Scholar]
- Acharya, F.; Kushawaha, V.; Panchal, J.; Chalishajar, D. Controllability of Fuzzy Solutions for Neutral Impulsive Functional Differential Equations with Non-local Conditions. Axioms 2021, 10, 84. [Google Scholar] [CrossRef]
- Nagarajan, M.; Karthik, K. Controllability Results for Non-linear Impulsive Functional Neutral Integrodifferential Equations in n- Dimensional Fuzzy Vector Space. Appl. Appl. Math. Int. J. 2022, 17, 2. [Google Scholar]
- Kumar, A.; Malik, M.; Nisar, K.S. Existence and total controllability results of fuzzy delay differential equation with non-instantaneous impulses. Alex. Eng. J. 2021, 60, 6001–6012. [Google Scholar] [CrossRef]
- Arhrrabi, E.; Elomari, M.H.; Melliani, S.; Chadli, L.S. Existence and controllability results for fuzzy neutral stochastic differential equations with impulses. Bol. Soc. Parana. Matemática 2023, 41, 1–14. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, S.K. Existence results for impulsive multivalued semilinear neutral functional differential inclusions in Banach spaces. J. Math. Anal. Appl. 2001, 263, 763–780. [Google Scholar] [CrossRef]
- Balasubramaniam, P.; Muralisankar, S. Existence and Uniqueness of Fuzzy Solution for the Non-linear Fuzzy Integrodifferential Equations. Appl. Math. Lett. 2001, 14, 455–462. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Harir, A.; Melliani, S.; Chadli, L.S. Existence and uniqueness of a fuzzy solution for some fuzzy neutral partial differential equation with non-local condition. Int. J. Math. Trends Technol. 2019, 65, 102–108. [Google Scholar] [CrossRef]
- Chalishajar, D.N.; Ramesh, R.; Vengataasalam, S.; Karthikeyan, K. Existence of fuzzy solutions for non-local impulsive neutral functional differential equations. J. Non-linear Anal. Appl. 2017, 2017, 19–30. [Google Scholar]
- Melliani, S.; Eljaoui, E.H.; Chadli, L.S. Fuzzy differential equation with non-local conditions and fuzzy semigroup. Adv. Differ. Equations 2016, 2016, 35. [Google Scholar] [CrossRef]
- Khan, A.; Shafqat, R.; Niazi, A.U.K. Existence Results of Fuzzy Delay Impulsive Fractional Differential Equation by Fixed Point Theory Approach. J. Funct. Spaces 2022, 2022, 4123949. [Google Scholar] [CrossRef]
- Dwivedi, A.; Rani, G.; Gautam, G.R. Existence of solutions of fuzzy fractional differential equations. Palest. J. Math. 2022, 11, 125–132. [Google Scholar]
- Guo, C.; Hu, J. Fixed-Time Stabilization of High-Order Uncertain Non-linear Systems: Output Feedback Control Design and Settling Time Analysis. J. Syst. Sci. Complex. 2023, 36, 1351–1372. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Y.; Kaku, I.; Kang, R.; Pan, X. Electric vehicle routing problem: A systematic review and a new comprehensive model with non-linear energy recharging and consumption. Renew. Sustain. Energy Rev. 2021, 151, 111567. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Q.; Li, Y.; Li, Y.; Zhou, H.; Fan, Y. A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere 2020, 247, 125869. [Google Scholar] [CrossRef]
- Puri, M.; Ralescu, D. Fuzzy random variables. J. Math. Anal. Appl. 1986, 114, 409–422. [Google Scholar] [CrossRef]
- Latif, A. Banach Contraction Principle and Its Generalizations. In Topics in Fixed Point Theory; Springer: Cham, Switzerland, 2014; pp. 33–64. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunasekar, T.; Thiravidarani, J.; Mahdal, M.; Raghavendran, P.; Venkatesan, A.; Elangovan, M. Study of Non-Linear Impulsive Neutral Fuzzy Delay Differential Equations with Non-Local Conditions. Mathematics 2023, 11, 3734. https://doi.org/10.3390/math11173734
Gunasekar T, Thiravidarani J, Mahdal M, Raghavendran P, Venkatesan A, Elangovan M. Study of Non-Linear Impulsive Neutral Fuzzy Delay Differential Equations with Non-Local Conditions. Mathematics. 2023; 11(17):3734. https://doi.org/10.3390/math11173734
Chicago/Turabian StyleGunasekar, Tharmalingam, Jothivelu Thiravidarani, Miroslav Mahdal, Prabakaran Raghavendran, Arikrishnan Venkatesan, and Muniyandy Elangovan. 2023. "Study of Non-Linear Impulsive Neutral Fuzzy Delay Differential Equations with Non-Local Conditions" Mathematics 11, no. 17: 3734. https://doi.org/10.3390/math11173734
APA StyleGunasekar, T., Thiravidarani, J., Mahdal, M., Raghavendran, P., Venkatesan, A., & Elangovan, M. (2023). Study of Non-Linear Impulsive Neutral Fuzzy Delay Differential Equations with Non-Local Conditions. Mathematics, 11(17), 3734. https://doi.org/10.3390/math11173734