Distributional Representation of a Special Fox–Wright Function with an Application
Abstract
1. Introduction and Motivation
2. Preliminaries
2.1. Special Functions and Fractional Integral Transforms
2.2. Special Functions and Theory of Distributions
3. New Representation of a Fox–Wright Function with Application to the Fractional Kinetic Equation
3.1. New Fractional Image Formulae Involving a Fox–Wright Function
3.2. Generalized Fractional Derivatives Involving a Fox–Wright Function
4. Convergence of New Series Representation as a Distribution
4.1. Validity of the New Generalized Representation
4.2. New Properties of a Fox–Wright Function as a Distribution
- (a)
- The combined effect of a Fox–Wright function and any distribution is:
- (b)
- A Fox–Wright function multiplied by an arbitrary constantgives the following:
- (c)
- An arbitrary complex constantis used to shift a Fox–Wright function:
- (d)
- A Fox–Wright function is transposed as:
- (e)
- The independent variable multiplied by a positive constant :
- (f)
- Differentiating a Fox–Wright function as a distribution:
- (g)
- A special Fox–Wright function’s distributional Fourier transform:
- (h)
- The Fourier transform’s duality property:
- (i)
- The Fourier transform and Parseval’s identity:
- (j)
- Differentiation characteristics of the Fourier transform:
- (k)
- A Fox–Wright function’s Taylor series:
- (l)
- A Fox–Wright function has the property of convolution:
- (m)
- If is a bounded support distribution, then:
5. Further Applications and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haubold, H.; Mathai, A. The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 2000, 273, 53–63. [Google Scholar] [CrossRef]
- Saxena, R.; Mathai, A.; Haubold, H. Unified Fractional Kinetic Equation and a Fractional Diffusion Equation. Astrophys. Space Sci. 2004, 290, 299–310. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. Erdélyi-Kober Fractional Calculus: From a Statistical Perspective, Inspired by Solar Neutrino Physics; Springer Briefs in Mathematical Physics: Singapore, 2018. [Google Scholar]
- Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A Practical Guide to Prabhakar Fractional Calculus. Fract. Calc. Appl. Anal. 2020, 23, 9–54. [Google Scholar] [CrossRef]
- Garrappa, R.; Mainardi, F.; Maione, G. Models of Dielectric Relaxation Based on Completely Monotone Functions. Fract. Calc. Appl. Anal. 2016, 19, 1105–1160. [Google Scholar] [CrossRef]
- Giusti, A.; Colombaro, I. Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 138–143. [Google Scholar] [CrossRef]
- Cahoy, D.O.; Polito, F. Renewal processes based on generalized Mittag–Leffler waiting times. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 639–650. [Google Scholar] [CrossRef]
- Mainardi, F.; Pagnini, G. The role of the Fox–Wright functions in fractional sub-diffusion of distributed order. J. Comput. Appl. Math. 2007, 207, 245–257. [Google Scholar] [CrossRef]
- Lebedeve, N.N. Special Functions and Their Applications; Prentice Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Mittag-Leffler, M.G. Sur la nouvelle fonction E(x). Comptes Rendus L’academie Des Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions. Theory and Applications; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kilbas, A.A. H-Transforms: Theory and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Kiryakova, V. Unified Approach to Fractional Calculus Images of Special Functions—A Survey. Mathematics 2020, 8, 2260. [Google Scholar] [CrossRef]
- Marichev, O.I. Volterra equation of Mellin convolutional type with a Horn function in the kernel. Izv. AN BSSR Ser. Fiz.-Mat. Nauk 1974, 1, 128–129. (In Russian) [Google Scholar]
- Saigo, M.; Maeda, N. More generalization of fractional calculus. In Transform Methods & Special Functions, Varna’96 (Proc. Second Internat. Workshop); Rusev, P., Dimovski, I., Kiryakova, V., Eds.; Science Culture Technology Publishing: Singapore, 1998; pp. 386–400. [Google Scholar]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Coll. Gen. Ed. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood Limited: Chichester, UK, 1985. [Google Scholar]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions: Properties and Operations; Academic Press: New York, NY, USA, 1969; Volume 1. [Google Scholar]
- Zamanian, A.H. Distribution Theory and Transform Analysis; Dover Publications: New York, NY, USA, 1987. [Google Scholar]
- Pal, A.; Jana, R.K.; Shukla, A.K. Some Integral Representations of the pRq(α,β;z) Function. Int. J. Appl. Comput. Math. 2020, 6, 72. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Qadir, A. Fourier transform and distributional representation of the gamma function leading to some new identities. Int. J. Math. Math. Sci. 2004, 37, 2091–2096. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Qadir, A. Fourier transform and distributional representation of the generalized gamma function with some applications. Appl. Math. Comput. 2011, 218, 1084–1088. [Google Scholar] [CrossRef]
- Tassaddiq, A. A New Representation of the k-Gamma Functions. Mathematics 2019, 7, 133. [Google Scholar] [CrossRef]
- Tassaddiq, A. A new representation of the extended k-gamma function with applications. Math. Methods Appl. Sci. 2021, 44, 11174–11195. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Srivastava, R. New Results Involving the Generalized Krätzel Function with Application to the Fractional Kinetic Equations. Mathematics 2023, 11, 1060. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Srivastava, R. New Results Involving Riemann Zeta Function Using Its Distributional Representation. Fractal Fract. 2022, 6, 254. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some Parametric and Argument Variations of the Operators of Fractional Calculus and Related Special Functions and Integral Transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Srivastava, H.; Tomovski, Z. Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Srivastava, H.M. A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and Applied Mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Srivastava, H.M. An Introductory Overview of Fractional-Calculus Operators Based Upon the Fox-Wright and Related Higher Transcendental Functions. J. Adv. Eng. Comput. 2021, 5, 135. [Google Scholar] [CrossRef]
- Hilfer, R.; Anton, L. Fractional master equations and fractal time random walks. Phys. Rev. E 1995, 51, R848–R851. [Google Scholar] [CrossRef] [PubMed]
Cases of Equation (11) | Relationship among the Kernels of Different Fractional Operators [14] |
---|---|
Marichev–Saigo–Maeda (M-S-M) | |
Saigo | |
Erdélyi–Kober (E–K) | |
Riemann–Liouville (R–L) |
m = 3 | Marichev–Saigo–Maeda Fractional Integrals |
---|---|
m = 2 | Saigo fractional integrals |
m = 1 | Erdélyi–Kober fractional integrals |
m = 1 | Riemann–Liouville (R–L) fractional integrals |
m = 3 | Marichev–Saigo–Maeda Fractional Derivative |
---|---|
m = 2 | Saigo fractional derivative |
m = 1 | Erdélyi–Kober fractional derivative |
m = 1 | Riemann–Liouville (R–L) fractional derivative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassaddiq, A.; Srivastava, R.; Kasmani, R.M.; Almutairi, D.K. Distributional Representation of a Special Fox–Wright Function with an Application. Mathematics 2023, 11, 3372. https://doi.org/10.3390/math11153372
Tassaddiq A, Srivastava R, Kasmani RM, Almutairi DK. Distributional Representation of a Special Fox–Wright Function with an Application. Mathematics. 2023; 11(15):3372. https://doi.org/10.3390/math11153372
Chicago/Turabian StyleTassaddiq, Asifa, Rekha Srivastava, Ruhaila Md Kasmani, and Dalal Khalid Almutairi. 2023. "Distributional Representation of a Special Fox–Wright Function with an Application" Mathematics 11, no. 15: 3372. https://doi.org/10.3390/math11153372
APA StyleTassaddiq, A., Srivastava, R., Kasmani, R. M., & Almutairi, D. K. (2023). Distributional Representation of a Special Fox–Wright Function with an Application. Mathematics, 11(15), 3372. https://doi.org/10.3390/math11153372