On Ricci Curvature of a Homogeneous Generalized Matsumoto Finsler Space
Abstract
1. Introduction
2. Preliminaries
- 0, ,
- i.e., F is positively homogeneous,
- Let be a basis of V such that Then, the Hessian matrix, , is positive definite at each point of .
3. Ricci Curvature
4. Ricci Curvature with Vanishing S-Curvature
- For the first part, let , and . Then, in view of Lemma (3), we getandEquation (10) gives us , for .Since is orthonormal basis of , we obtainFor the sufficient part, letTherefore,which is equivalent towhich impliesBy using the Lemma 3, is defined aswhich is equivalent to
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matsumoto, M. Theory of (α,β)-metric. Rep. Math. Phys. 1992, 31, 43–83. [Google Scholar] [CrossRef]
- Heefer, S.; Fuster, A.; van Voorthuizen, J.; Pfeifer, C. On the metrizability of m-Kropina spaces with closed null 1-form. arXiv 2022, arXiv:2210.02718. [Google Scholar]
- Shankar, G.; Yadav, R. The L-dual of generalized Matsumoto space. Int. J. Pure Appl. Math. 2012, 78, 867–877. [Google Scholar]
- Gupta, M.K.; Sharma, S.; Mofarreh, F.; Chaubey, S.K. Curvatures on Homogeneous Generalized Matsumoto Space. Mathematics 2023, 11, 1316. [Google Scholar] [CrossRef]
- Matsumoto, M. A slope of a mountain is a Finsler surface with respect to a time measure. J. Math. Kyoto Univ. 1989, 29, 17–25. [Google Scholar] [CrossRef]
- Atashafrouz, M.; Najafi, B.; Tayebi, A. On non-positively curved homogeneous Finsler metrics. Differ. Geom. Its Appl. 2021, 79, 101830. [Google Scholar] [CrossRef]
- Deng, S. The S-curvature of homogeneous Randers Spaces. Differ. Geo. Appl. 2009, 27, 75–84. [Google Scholar] [CrossRef][Green Version]
- Deng, S.; Hou, Z. On symmetric Finsler spaces. Isr. J. Math 2007, 162, 197–219. [Google Scholar] [CrossRef][Green Version]
- Narasimhamurthy, S.K.; Keriyappa, C.; Kamplappa, S.K. On curvatures of homogeneous Finsler-kropina space. Gulf J. Math. 2017, 5, 73–83. [Google Scholar] [CrossRef]
- Shankar, G.; Kaur, K. Homogeneous Finsler space with exponential metric. Adv. Geom. 2020, 20, 391–400. [Google Scholar] [CrossRef]
- Cheng, X.; Shen, Z.; Tian, Y. A class of Einstein (α,β)-metrics. Isr. J. Math 2012, 192, 221–249. [Google Scholar] [CrossRef]
- Yan, Z.; Deng, S. On homogeneous Einstein (α,β)-metrics. J. Geom. Phys. 2016, 109, 20–36. [Google Scholar] [CrossRef]
- Zhou, L. A local classification of a class of (α,β)-metrics with constant flag curvature. Differ. Geom. Its Appl. 2010, 28, 170–193. [Google Scholar] [CrossRef][Green Version]
- Bao, D.; Robles, C.; Shen, Z. Zermelo navigation on Riemannian mannifold. J. Differ. Geom. 2004, 66, 377–435. [Google Scholar] [CrossRef]
- Shen, Z.; Cheng, X. A class of Finsler metrics with isotropic S-curvature. Isr. J. Math 2009, 169, 317–340. [Google Scholar]
- Deng, S. Homogeneous Finsler Spaces; Springer: New York, NY, USA, 2012. [Google Scholar]
- Desai, S.; Narasimhamurthy, S.K.; Raghavendra, R.S. Ricci curvature formula foa a homogeneous Finsler space with (α,β)-metrics. J. Int. Acad. Phys. Sci. 2022, 26, 247–257. [Google Scholar]
- Kaur, K.; Shankar, G. Ricci curvature of a homogeneous Finsler space with exponential metric. Differ. Geom. Dyn. Syst. 2020, 22, 130–140. [Google Scholar]
- Rani, S.; Shankar, G. On the Ricci curvature of a homogeneous Finsler space with Randers change of square metric. Differ. Geom. Dyn. Syst. 2021, 23, 204–220. [Google Scholar]
- Shankar, G.; Jangir, S.; Kaur, J. Curvatures on homogeneous Finsler space. arXiv 2022, arXiv:2203.04667v1. [Google Scholar]
- Chern, S.S.; Shen, Z. Riemann-Finsler Geometry; World Scientific Publisher: Singapore, 2004. [Google Scholar]
- Deng, S.; Hau, Z. The group of isometries of a Finsler space. Pac. J. Math 2002, 207, 149–155. [Google Scholar] [CrossRef]
- Li, Y.; Alkhaldi, A.; Ali, A.; Abdel-Baky, R.A.; Saad, M.K. Investigation of ruled surfaces and their singularities according to Blaschke frame in Euclidean 3-space. AIMS Math 2023, 8, 13875–13888. [Google Scholar] [CrossRef]
- Li, Y.; Srivastava, S.K.; Mofarreh, F.; Kumar, A.; Ali, A. Ricci Soliton of CR-Warped Product Manifolds and Their Classifications. Symmetry 2023, 15, 976. [Google Scholar] [CrossRef]
- Li, Y.; Laurian-Ioan, P.; Alqahtani, L.; Alkhaldi, A.; Ali, A. Zermelo’s navigation problem for some special surfaces of rotation. AIMS Math. 2023, 8, 16278–16290. [Google Scholar] [CrossRef]
- Li, Y.; Caliskan, A. Quaternionic Shape Operator and Rotation Matrix on Ruled Surfaces. Axioms 2023, 12, 486. [Google Scholar] [CrossRef]
- Li, Y.; Gezer, A.; Karakaş, E. Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Math. 2023, 8, 17335–17353. [Google Scholar] [CrossRef]
- Li, Y.; Bhattacharyya, S.; Azami, S.; Saha, A.; Hui, S.K. Harnack Estimation for Nonlinear, Weighted, Heat-Type Equation along Geometric Flow and Applications. Mathematics 2023, 11, 2516. [Google Scholar] [CrossRef]
- Li, Y.; Kumara, H.A.; Siddesha, M.S.; Naik, D.M. Characterization of Ricci Almost Soliton on Lorentzian Manifolds. Symmetry 2023, 15, 1175. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ersoy, S. On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space. AIMS Math. 2023, 8, 22256–22273. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Gupta, M.K.; Sharma, S.; Chaubey, S.K. On Ricci Curvature of a Homogeneous Generalized Matsumoto Finsler Space. Mathematics 2023, 11, 3365. https://doi.org/10.3390/math11153365
Li Y, Gupta MK, Sharma S, Chaubey SK. On Ricci Curvature of a Homogeneous Generalized Matsumoto Finsler Space. Mathematics. 2023; 11(15):3365. https://doi.org/10.3390/math11153365
Chicago/Turabian StyleLi, Yanlin, Manish Kumar Gupta, Suman Sharma, and Sudhakar Kumar Chaubey. 2023. "On Ricci Curvature of a Homogeneous Generalized Matsumoto Finsler Space" Mathematics 11, no. 15: 3365. https://doi.org/10.3390/math11153365
APA StyleLi, Y., Gupta, M. K., Sharma, S., & Chaubey, S. K. (2023). On Ricci Curvature of a Homogeneous Generalized Matsumoto Finsler Space. Mathematics, 11(15), 3365. https://doi.org/10.3390/math11153365

