On a Fekete–Szegö Problem Associated with Generalized Telephone Numbers
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983; Volume 259. [Google Scholar]
- Akgül, A.; Sakar, F.M. A certain subclass of bi-univalent analytic functions introduced by means of the q -analogue of Noor integral operator and Horadam polynomials. Turk. J. Math. 2019, 43, 2275–2286. [Google Scholar] [CrossRef]
- Akgül, A.; Sakar, F.M. A new characterization of (P,Q)-Lucas polynomial coefficients of the bi-univalent function class associated with q-analogue of Noor integral operator. Afr. Mat. 2022, 33, 87. [Google Scholar] [CrossRef]
- Abirami, C.; Magesh, N.; Yamini, J. Initial bounds for certain classes of bi-univalent functions defined by Horadam Polynomials. Abstr. Appl. Anal. 2020, 2020, 7391058. [Google Scholar] [CrossRef] [Green Version]
- Al-Shbeil, I.; Wanas, A.K.; Saliu, A.; Cătaş, A. Applications of beta negative binomial distribution and Laguerre polynomials on Ozaki bi-close-to-convex functions. Axioms 2022, 11, 451. [Google Scholar] [CrossRef]
- Al-Amoush, A.G. Coefficient estimates for a new subclasses of λ-pseudo biunivalent functions with respect to symmetrical points associated with the Horadam Polynomials. Turk. J. Math. 2019, 43, 2865–2875. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions. Filomat 2016, 30, 1567–1575. [Google Scholar] [CrossRef]
- Çaǧlar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk. J. Math. 2017, 41, 694–706. [Google Scholar] [CrossRef]
- Cotîrlǎ, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
- Hamzat, J.O.; Oluwayemi, M.O.; Lupaş, A.A.; Wanas, A.K. Bi-univalent problems involving generalized multiplier transform with respect to symmetric and conjugate points. Fractal Fract. 2022, 6, 483. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Juma, A.R.S.; Al-Fayadh, A.; Vijayalakshmi, S.P.; Sudharsan, T.V. Upper bound on the third hankel determinant of the class of univalent functions using an operator. Afr. Mat. 2022, 33, 56. [Google Scholar] [CrossRef]
- Lupas, A.A.; El-Deeb, S.M. Subclasses of bi-univalent functions connected with integral operator based upon Lucas polynomial. Symmetry 2022, 14, 622. [Google Scholar] [CrossRef]
- Magesh, N.; Bulut, S. Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions. Afr. Mat. 2018, 29, 203–209. [Google Scholar] [CrossRef]
- Shahab, N.H.; Juma, A.R.S. Coefficient bounds for certain subclasses for meromorphic functions involving quasi subordination. AIP Conf. Proc. 2022, 2400, 030001. [Google Scholar]
- Srivastava, H.M.; Altınkaya, Ş.; Yalçin, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 1873–1879. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Motamednezhad, A.; Adegani, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 87, 172. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Wanas, A.K. Applications of the Horadam polynomials involving λ-pseudo-starlike bi-univalent functions associated with a certain convolution operator. Filomat 2021, 35, 4645–4655. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrlǎ, L.-I. Applications of (M-N)-Lucas polynomials on a certain family of bi-univalent functions. Mathematics 2022, 10, 595. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 2, 85–89. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokol, J. Fekete-Szegö problem for some starlike functions related to shell-like curves. Math. Slovaca 2016, 66, 135–140. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Abdeljaward, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar] [CrossRef]
- Amourah, A. Fekete-Szegö inequalities for analytic and bi-univalent functions subordinate to (p,q)-Lucas Polynomials. arXiv 2020, arXiv:2004.00409. [Google Scholar]
- Cataş, A. A note on subclasses of univalent functions defined by a generalized Sălăgean operator. Acta Univ. Apulensis 2006, 12, 73–78. [Google Scholar]
- Deniz, E. Sharp coefficient bounds for starlike functions associated with generalized telephone numbers. Bull. Malays. Math. Sci. Soc. 2021, 44, 1525–1542. [Google Scholar] [CrossRef]
- Magesh, N.; Yamini, J. Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions. Tbilisi Math. J. 2018, 11, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. arXiv 2018, arXiv:1801.09531. [Google Scholar] [CrossRef]
- Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
- Wloch, A.; Wolowiec-Musial, M. On generalized telephone number, their interpretations and matrix generators. Util. Math. 2017, 10, 531–539. [Google Scholar]
- Bednarz, U.; Wolowiec-Musial, M. On a new generalization of telephone numbers. Turk. J. Math. 2019, 43, 1595–1603. [Google Scholar] [CrossRef] [Green Version]
- Cotîrlǎ, L.-I.; Wanas, A.K. Coefficient-related studies and Fekete–Szegö inequalities for new classes of bi-Starlike and bi-convex functions. Symmetry 2022, 14, 2263. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; Wanas, A.K.; Sakar, F.M.; Aydoǧan, S.M. On a Fekete–Szegö Problem Associated with Generalized Telephone Numbers. Mathematics 2023, 11, 3304. https://doi.org/10.3390/math11153304
Breaz D, Wanas AK, Sakar FM, Aydoǧan SM. On a Fekete–Szegö Problem Associated with Generalized Telephone Numbers. Mathematics. 2023; 11(15):3304. https://doi.org/10.3390/math11153304
Chicago/Turabian StyleBreaz, Daniel, Abbas Kareem Wanas, Fethiye Müge Sakar, and Seher Melike Aydoǧan. 2023. "On a Fekete–Szegö Problem Associated with Generalized Telephone Numbers" Mathematics 11, no. 15: 3304. https://doi.org/10.3390/math11153304
APA StyleBreaz, D., Wanas, A. K., Sakar, F. M., & Aydoǧan, S. M. (2023). On a Fekete–Szegö Problem Associated with Generalized Telephone Numbers. Mathematics, 11(15), 3304. https://doi.org/10.3390/math11153304