The Finite Element Method of High Degree of Accuracy for Boundary Value Problem with Singularity
Abstract
:1. Introduction
2. An -Generalized Solution
- —a two-dimensional Euclidian space,
- —an arbitrary point in ,
- —a convex bounded domain in ,
- —piecewise smooth boundary of ,
- —the closure of , i.e., ,
- —a set of points belonging to , including the points of the intersection of its smooth pieces, ,
- —a disk of radius with its center in , i.e.,
- , , ,
- ,
- —a weight function, which coincides with the distance to in and equals in .
- (a)
- for , where , the constants , do not depend on k;
- (b)
- , ; with the squared norm
3. Auxiliary Statements
- (B)
- If , then and, moreover,
- (A)
- If , then and
- (B)
- If , then and there exist positive constants independent of u such that
4. Weighted Finite Element Method
- (1)
- for and
- (2)
- for and
- (3)
- for and
5. The Estimate of the Convergence Rate
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rukavishnikov, V.A. Methods of numerical analysis for boundary value problems with strong singularity. Russ. J. Numer Anal. Math. Model. 2009, 24, 565–590. [Google Scholar] [CrossRef]
- Ciarlet, P.G. The Finite Element Method for Elliptic Problems; Studies in Mathematics and Its Applications; North-Holland: Amsterdam, The Netherlands, 1978; p. 530. [Google Scholar]
- Samarskii, A.A.; Lazarov, R.D.; Makarov, V.L. Finite Difference Schemes for Differential Equations with Generalized Solutions; Visshaya Shkola: Moscow, Russia, 1987; p. 296. [Google Scholar]
- Vu-Bac, N.; Nguyen-Xuan, H.; Chen, L.; Bordas, S.; Kerfriden, P.; Simpson, R.N.; Liu, G.R.; Rabczuk, T. A node-based smoothed extended finite element method (NS-XFEM) for fracture analysis. Comput. Model. Eng. Sci. 2011, 73, 331–356. [Google Scholar] [CrossRef]
- Nguyen-Xuan, H.; Liu, G.R.; Bordas, S.; Natarajan, S.; Rabczuk, T. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Comput. Methods Appl. Mech. Eng. 2013, 253, 252–273. [Google Scholar] [CrossRef]
- Bhowmick, S.; Liu, G.R. On singular ES-FEM for fracture analysis of solids with singular stress fields of arbitrary order. Eng. Anal. Bound. Elem. 2018, 86, 64–81. [Google Scholar] [CrossRef]
- Belytschko, T.; Gu, L.; Lu, Y.Y. Fracture and crack growth by element free Galerkin methods. Model. Simul. Mater. Sci. Eng. 1994, 2, 519–534. [Google Scholar] [CrossRef]
- Khosravifard, A.; Hematiyan, M.R.; Bui, T.Q.; Do, T.V. Accurate and efficient analysis of stationary and propagating crack problems by meshless methods. Theor. Appl. Fract. Mech. 2017, 87, 21–34. [Google Scholar] [CrossRef]
- Surendran, M.; Natarajan, S.; Bordas, S.; Palani, G. Linear smoothed extended finite element method. Int. J. Numer. Meth. Eng. 2017, 112, 1733–1749. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Liu, G.R. Smoothed Finite Element Methods (S-FEM): An Overview and Recent Developments. Arch. Computat. Methods. Eng. 2018, 25, 397–435. [Google Scholar] [CrossRef]
- Nicaise, S.; Renard, Y.; Chahine, E. Optimal convergence analysis for the extended finite element method. Int. J. Numer. Meth. Eng. 2011, 86, 528–548. [Google Scholar] [CrossRef] [Green Version]
- Francis, A.; Ortiz-Bernardin, A.; Bordas, S.; Natarajan, S. Linear smoothed polygonal and polyhedral finite elements. Int. J. Numer. Meth. Eng. 2017, 109, 1263–1288. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, L. A field-enriched finite element method for crack propagation in fiber-reinforced composite lamina without remeshing. Compos. Struct. 2021, 270, 114074. [Google Scholar] [CrossRef]
- Zhang, F.; Cheng, J.; Liu, T. A reconstructed discontinuous Galerkin method for incompressible flows on arbitrary grids. J. Comput. Phys. 2020, 418, 109580. [Google Scholar] [CrossRef]
- Hou, Y.; Han, Y.; Wen, J. An equal-order hybridized discontinuous Galerkin method with a small pressure penalty parameter for the Stokes equations. Comput. Math. Appl. 2021, 93, 58–65. [Google Scholar] [CrossRef]
- Lubuma, J.M.S.; Patidar, K.C. Towards the implementation of the singular function method for singular perturbation problems. Appl. Math. Comput. 2009, 209, 68–74. [Google Scholar] [CrossRef]
- Jang, D.K.; Pyo, J.H. Algorithms to apply finite element dual singular function method for the stokes equations including corner singularities. J. Korean Soc. Ind. Appl. Math. 2019, 23, 115–138. [Google Scholar] [CrossRef]
- John, L.; Pustejovska, P.; Wohlmuth, B.; Rüde, U. Energy-corrected finite element methods for the Stokes system. IMA J. Numer. Anal. 2017, 37, 687–729. [Google Scholar] [CrossRef]
- Choi, H.J.; Kweon, J.R. A finite element method for singular solutions of the Navier–Stokes equations on a non-convex polygon. J. Comput. Appl. Math. 2016, 292, 342–362. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A. The weight estimation of the speed of difference scheme convergence. Dokl. Akad. Nauk SSSR 1986, 288, 1058–1062. [Google Scholar]
- Rukavishnikov, V.A.; Ereklintsev, A.G. On the coercivity of the Rν-generalized solution of the first boundary value problem with coordinated degeneration of the input data. Differ. Equ. 2005, 41, 1757–1767. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Kuznetsova, E.V. Coercive estimate for a boundary value problem with noncoordinated degeneration of the data. Differ. Equ. 2007, 43, 550–560. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Kuznetsova, E.V. The Rν-generalized solution of a boundary value problem with a singularity belongs to the space . Differ. Equ. 2009, 45, 913–917. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Rukavishnikova, E.I. Existence and uniqueness of an Rν-generalized solution of the Dirichlet problem for the Lamé system with a corner singularity. Differ. Equ. 2019, 55, 832–840. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Rukavishnikov, A.V. On the Existence and Uniqueness of an Rν-Generalized Solution to the Stokes Problem with Corner Singularity. Mathematics 2022, 10, 1752. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Rukavishnikova, H.I. The finite element method for a boundary value problem with strong singularity. J. Comput. Appl. Math. 2010, 234, 2870–2882. [Google Scholar] [CrossRef] [Green Version]
- Rukavishnikov, V.A. Weighted FEM for Two-Dimensional Elasticity Problem with Corner Singularity. Lect. Notes Comput. Sci. Eng. 2016, 112, 411–419. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Mosolapov, A.O.; Rukavishnikova, E.I. Weighted finite element method for elasticity problem with a crack. Comput. Struct. 2021, 243, 106400. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A. Body of optimal parameters in the weighted finite element method for the crack problem. J. Appl. Comput. Mech. 2021, 7, 2159–2170. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Mosolapov, A.O. New numerical method for solving time-harmonic Maxwell equations with strong singularity. J. Comput. Phys. 2012, 231, 2438–2448. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Mosolapov, A.O. Weighted edge finite element method for Maxwell’s equations with strong singularity. Dokl. Math. 2013, 87, 156–159. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Rukavishnikov, A.V. Weighted finite element method for the Stokes problem with corner singularity. J. Comput. Appl. Math. 2018, 341, 144–156. [Google Scholar] [CrossRef]
- Rukavishnikov, A.V.; Rukavishnikov, V.A. New Numerical Approach for the Steady-State Navier–Stokes Equations with Corner Singularity. Int. J. Comput. Methods 2022, 19, 2250012. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Rukavishnikov, A.V. Theoretical analysis and construction of numerical method for solving the Navier–Stokes equations in rotation form with corner singularity. J. Comput. Appl. Math. 2023, 429, 115218. [Google Scholar] [CrossRef]
- Strang, G.; Fix, G.J. An Analysis of the Finite Element Method; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1973; p. 306. [Google Scholar]
- Mikhailov, V.P. Partial Differential Equations; Mir: Moscow, Russia, 1978; p. 391. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rukavishnikov, V.A.; Rukavishnikova, E.I. The Finite Element Method of High Degree of Accuracy for Boundary Value Problem with Singularity. Mathematics 2023, 11, 3272. https://doi.org/10.3390/math11153272
Rukavishnikov VA, Rukavishnikova EI. The Finite Element Method of High Degree of Accuracy for Boundary Value Problem with Singularity. Mathematics. 2023; 11(15):3272. https://doi.org/10.3390/math11153272
Chicago/Turabian StyleRukavishnikov, Viktor A., and Elena I. Rukavishnikova. 2023. "The Finite Element Method of High Degree of Accuracy for Boundary Value Problem with Singularity" Mathematics 11, no. 15: 3272. https://doi.org/10.3390/math11153272
APA StyleRukavishnikov, V. A., & Rukavishnikova, E. I. (2023). The Finite Element Method of High Degree of Accuracy for Boundary Value Problem with Singularity. Mathematics, 11(15), 3272. https://doi.org/10.3390/math11153272