Coefficients and Fekete–Szegö Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials
Abstract
:1. Introduction
2. Coefficient Bounds of the Class
3. Fekete–Szegö Functional Estimations of the Class
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Mocanu. Differential Subordinations: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Duren, P.L. Grundlehren der Mathematischen Wissenchaffen; Univalent Functions; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.; Aouf, M. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of bi-univalent functions defined by Frasin differential operator. Mathematics 2020, 8, 783. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Murugusundaramoorthy, G.; Janani, T. Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator. J. Complex Anal. 2014, 2014, 693908. [Google Scholar]
- Srivastava, H.; Mishra, A.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Yousef, F.; Frasin, B.; Al-Hawary, T. Fekete-Szego inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. arXiv 2018, arXiv:1801.09531. [Google Scholar] [CrossRef]
- Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete–Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator. Afr. Mat. 2019, 30, 495–503. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis. In Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, UK, 1–20 July 1979. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in¦ z¦< 1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Kedzierawski, A.W. Some remarks on bi-univalent functions. Ann. Univ. Mariae Curie-Sk lodowska Sect. A 1985, 39, 77–81. [Google Scholar]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 1984, 5, 559–568. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications; Pergamon: Oxford, UK, 1988; pp. 53–60. [Google Scholar]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
- Bukhari, S.Z.H.; Mohsan, R.A.Z.A.; Nazir, M. Some generalizations of the class of analytic functions with respect to k-symmetric points. Hacet. J. Math. Stat. 2016, 45, 1–14. [Google Scholar]
- Abirami, C.; Magesh, N.; Yamini, J. Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials. In Abstract and Applied Analysis; Hindawi Limited: London, UK, 2020; Volume 2020, pp. 1–8. [Google Scholar]
- Magesh, N.; Yamini, J. Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions. Tbil. Math. J. 2018, 11, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Oros, G.I.; Cotîrlă, L.I. Coefficient estimates and the Fekete–Szegö problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Vijaya, K.; Thilagavathi, K. Coefficient bounds for certain subclasses of bi-prestarlike functions associated with the Chebyshev polynomials. Math. Moravica 2022, 24, 71–82. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Bulboacă, T. Subclasses of yamakawa-type Bi-starlike functions associated with gegenbauer polynomials. Axioms 2022, 11, 92. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö inequality for analytic and biunivalent functions subordinate to Gegenbauer polynomials. J. Ournal Funct. Spaces 2021, 2021, 5574673. [Google Scholar] [CrossRef]
- Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R.; Al Soudi, M. A generalization of Gegenbauer polynomials and bi-univalent functions. Axioms 2023, 12, 128. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 10, 2462. [Google Scholar] [CrossRef]
- Amourah, A.; Alnajar, O.; Darus, M.; Shdouh, A.; Ogilat, O. Estimates for the Coefficients of Subclasses Defined by the Bell Distribution of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2023, 11, 1799. [Google Scholar] [CrossRef]
- Illafe, M.; Yousef, F.; Mohd, M.H.; Supramaniam, S. Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination. Axioms 2023, 12, 235. [Google Scholar] [CrossRef]
- Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Palest. J. Math. 2021, 10, 625–632. [Google Scholar]
- Yousef, F.; Alroud, S.; Illafe, M. A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind. Bol. Soc. Matem. Mex. 2020, 26, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Magesh, N.; Bulut, S. Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions. Afr. Mat. 2018, 29, 203–209. [Google Scholar] [CrossRef]
- Illafe, M.; Amourah, A.; Mohd, M.H. Coefficient estimates and Fekete–Szegö functional inequalities for a certain subclass of analytic and bi-univalent functions. Axioms 2022, 11, 147. [Google Scholar] [CrossRef]
- Lashin, A.M.Y.; Badghaish, A.O.; Bajamal, A.Z. Bounds for Two New Subclasses of Bi-Univalent Functions Associated with Legendre Polynomials. Mathematics 2021, 9, 3188. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussen, A.; Zeyani, A. Coefficients and Fekete–Szegö Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials. Mathematics 2023, 11, 2852. https://doi.org/10.3390/math11132852
Hussen A, Zeyani A. Coefficients and Fekete–Szegö Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials. Mathematics. 2023; 11(13):2852. https://doi.org/10.3390/math11132852
Chicago/Turabian StyleHussen, Abdulmtalb, and Abdelbaset Zeyani. 2023. "Coefficients and Fekete–Szegö Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials" Mathematics 11, no. 13: 2852. https://doi.org/10.3390/math11132852
APA StyleHussen, A., & Zeyani, A. (2023). Coefficients and Fekete–Szegö Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials. Mathematics, 11(13), 2852. https://doi.org/10.3390/math11132852