A Novel Performance Bound for Massive MIMO Enabled HetNets
Abstract
1. Introduction
2. System Model
3. Performance Bound
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Chu, X.; Guo, W.; Wang, S. Coexistence of Wi-Fi and Heterogeneous Small Cell Networks Sharing Unlicensed Spectrum. Commun. Mag. IEEE 2015, 53, 158–164. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, C.; Cheng, J.; Leung, V. Cooperative Interference Mitigation and Handover Management for Heterogeneous Cloud Small Cell Networks. IEEE Wirel. Commun. 2015, 22, 92–99. [Google Scholar] [CrossRef]
- Li, B.; Dai, Y.; Dong, Z.; Panayirci, E.; Jiang, H. Energy-Efficient Resources Allocation with Millimeter-Wave Massive MIMO in Ultra Dense HetNets by SWIPT and CoMP. IEEE Trans. Wirel. Commun. 2021, 20, 4435–4451. [Google Scholar] [CrossRef]
- Parida, P.; Dhillon, H.S. Cell-Free Massive MIMO with Finite Fronthaul Capacity: A Stochastic Geometry Perspective. IEEE Trans. Wirel. Commun. 2022, 22, 1555–1572. [Google Scholar] [CrossRef]
- Hao, Y.; Ni, Q.; Li, H.; Hou, S. Energy and spectral efficiency tradeoff with user association and power coordination in massive MIMO enabled HetNets. IEEE Commun. Lett. 2016, 20, 2091–2094. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, H.; Wang, X.; Cheng, J. Backhaul-Aware User Association and Resource Allocation for Massive MIMO-Enabled HetNets. IEEE Commun. Lett. 2017, 21, 2710–2713. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Li, C.; Huang, Y.; Yang, L. Joint Design of User Association and Power Allocation With Proportional Fairness in Massive MIMO HetNets. IEEE Access 2017, 5, 6560–6569. [Google Scholar] [CrossRef]
- Liu, D.; Wang, L.; Chen, Y.; Zhang, T.; Chai, K.K.; Elkashlan, M. Distributed energy efficient fair user association in massive MIMO enabled HetNets. IEEE Commun. Lett. 2015, 19, 1770–1773. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, H.; Petrosian, O. Optimal Power Allocation Based on Metaheuristic Algorithms in Wireless Network. Mathematics 2022, 10, 3336. [Google Scholar] [CrossRef]
- Ayoubi, R.A.; Spagnolini, U. Performance of Dense Wireless Networks in 5G and beyond Using Stochastic Geometry. Mathematics 2022, 10, 1156. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, T.; Sun, Q.; Hu, Q.; Xu, M. Cell-Free Massive MIMO with Energy-Efficient Downlink Operation in Industrial IoT. Mathematics 2022, 10, 1687. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, S. Performance Evaluation of MU-MIMO Transmissions with Joint Interference Constraint in HetNet. Math. Probl. Eng. 2021, 2021, 2397803. [Google Scholar] [CrossRef]
- Li, H.; Cheng, J.; Wang, Z.; Wang, H. Joint Antenna Selection and Power Allocation for an Energy-efficient Massive MIMO System. Wirel. Commun. Lett. IEEE 2019, 8, 257–260. [Google Scholar] [CrossRef]
- Shin, H.; Win, M.Z. MIMO diversity in the presence of double scattering. IEEE Trans. Inf. Theory 2008, 54, 2976–2996. [Google Scholar] [CrossRef]
- Da Costa, D.B.; Aïssa, S. Cooperative dual-hop relaying systems with beamforming over Nakagami-m fading channels. IEEE Trans. Wirel. Commun. 2009, 8, 3950–3954. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Bletsas, A.; Shin, H.; Win, M.Z. Cooperative communications with outage-optimal opportunistic relaying. IEEE Trans. Wirel. Commun. 2007, 6, 3450–3460. [Google Scholar] [CrossRef]
- Van Chien, T.; Björnson, E.; Larsson, E.G. Joint Power Allocation and User Association Optimization for Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2016, 15, 6384–6399. [Google Scholar] [CrossRef]
- Khawam, K.; Lahoud, S.; Helou, M.E.; Martin, S.; Feng, G. Coordinated Framework for Spectrum Allocation and User Association in 5G HetNets with mmWave. IEEE Trans. Mob. Comput. 2020, 21, 1226–1243. [Google Scholar] [CrossRef]
- Hamdi, R.; Said, A.B.; Erbad, A.; Mohamed, A.; Guizani, M. Hierarchical Federated Learning over HetNets enabled by Wireless Energy Transfer. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021. [Google Scholar]



| Parameter | Value |
|---|---|
| Cell radius | 1000 m |
| Bandwidth | 1 MHz |
| Maximum transmit antennas | 300 |
| Maximum UTs | 100 |
| Maximum transmit powers | 25 dB |
| Maximum peak interference power | 10 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Cao, J.; Luo, G.; Wang, Z.; Wang, H. A Novel Performance Bound for Massive MIMO Enabled HetNets. Mathematics 2023, 11, 2846. https://doi.org/10.3390/math11132846
Li H, Cao J, Luo G, Wang Z, Wang H. A Novel Performance Bound for Massive MIMO Enabled HetNets. Mathematics. 2023; 11(13):2846. https://doi.org/10.3390/math11132846
Chicago/Turabian StyleLi, Hao, Jiawei Cao, Guangkun Luo, Zhigang Wang, and Houjun Wang. 2023. "A Novel Performance Bound for Massive MIMO Enabled HetNets" Mathematics 11, no. 13: 2846. https://doi.org/10.3390/math11132846
APA StyleLi, H., Cao, J., Luo, G., Wang, Z., & Wang, H. (2023). A Novel Performance Bound for Massive MIMO Enabled HetNets. Mathematics, 11(13), 2846. https://doi.org/10.3390/math11132846
