The Whitham Modulation Solution of the Complex Modified KdV Equation
Abstract
:1. Introduction
2. The Whitham Modulation Equation
3. Krichever’s Algebro-Geometric Scheme
4. Linear Overdetermined Systems of the Euler–Poisson–Darboux Type
5. A Step-like Initial Value Problem
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Korteweg, D.J.; De Vries, G. On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Phil. Mag. 1895, 39, 422–443. [Google Scholar] [CrossRef]
- Lax, P.; Levermore, C. The small dispersion limit of the Korteweg-De Vries equation. Commun. Pure Appl. Math. 1983, 36, 253–290. [Google Scholar] [CrossRef]
- Tian, F.R.; Ye, J. On the Whitham equations for the semiclassical limit of the defocusing nonlinear Schrödinger equation. Pure Appl. Math. 1999, 52, 655–692. [Google Scholar] [CrossRef]
- Ahmed, I.; Mu, C.; Zheng, P. Exact solution of the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation by Adomian decomposition method. Malaya J. Mat. 2014, 2, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, J. Sine-Gordon equation. J. Math. Phys. 1970, 11, 258–266. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. Method for solving the Sine-Gordon equation. Phys. Rev. Lett. 1973, 30, 1262. [Google Scholar] [CrossRef]
- Johnson, R.S. Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech. 2002, 455, 63–82. [Google Scholar] [CrossRef]
- Lenells, J. Traveling wave solutions of the Camassa–Holm equation. J. Differ. Equ. 2005, 217, 393–430. [Google Scholar] [CrossRef] [Green Version]
- Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Method for solving the Korteveg-de Vries equation. Phys. Rev. Lett. 1967, 19, 1095. [Google Scholar] [CrossRef]
- Hirota, R. The Direct Method in Soliton Theory, 1st ed.; Cambridge University Press: Cambridge, UK, 2004; pp. 37–55. [Google Scholar]
- Liu, Y.Q.; Ren, B.; Wang, D.S. Various localised nonlinear wave interactions in the generalised Kadomtsev-Petviashvili equation. East Asian J. Appl. Math. 2021, 11, 301–325. [Google Scholar] [CrossRef]
- Matveev, V.B.; Salle, M.A. Darboux Transformation and Solitons, 1st ed.; Springer-Verlag: Berlin, Germany, 1991; pp. 29–48. [Google Scholar]
- Ohta, Y.; Wang, D.S.; Yang, J. General N-dark-dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 2011, 127, 345–371. [Google Scholar] [CrossRef]
- Weiss, J.; Tabor, M.; Carnevale, G. The Painlevé property for partial differential equations. Math. Phys. 1983, 24, 522–526. [Google Scholar] [CrossRef]
- Deift, P.; Zhou, X. A steepest descent method for oscillatory Riemann-Hilbert problems. Bull. Am. Math. Soc. 1993, 137, 295–368. [Google Scholar] [CrossRef] [Green Version]
- Whitham, G.B. Linear and Nonlinear Waves, 1st ed.; Wiley: New York, NY, USA, 1974; pp. 454–470. [Google Scholar]
- Kamchatnov, A.M. Evolution of initial discontinuities in the DNLS equation theory. J. Phys. Commun. 2018, 2, 025027. [Google Scholar] [CrossRef]
- El, G.A.; Geogjaev, V.V.; Gurevich, A.V.; Krylov, A.L. Decay of an initial discontinuity in the defocusing NLS hydrodynamics. Phys. D 1995, 87, 186–192. [Google Scholar] [CrossRef]
- Ivanov, S.K. Riemann problem for the light pulses in optical fibers for the generalized Chen-Lee-Liu equation. Phys. Rev. A 2020, 101, 053827. [Google Scholar] [CrossRef]
- Whitham, G.B. Nonlinear dispersive waves. Proc. R. Soc. Lond. A 1965, 283, 238–261. [Google Scholar] [CrossRef]
- Gurevich, A.V.; Pitaevskii, L.P. Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 1974, 2, 291. [Google Scholar]
- Tian, F.R. The Whitham-type equations and linear overdetermined systems of Euler-Poisson-Darboux type. Duke Math J. 1994, 74, 203–221. [Google Scholar] [CrossRef]
- Tian, F.R. The initial value problem for the Whitham averaged system. Commun. Math. Phys. 1994, 166, 79–115. [Google Scholar] [CrossRef]
- Xu, X.X.; Cao, C.W.; Zhang, D.J. Algebro-geometric solutions to the lattice potential modified Kadomtsev-Petviashvili equation. J. Phys. A Math. Theor. 2022, 55, 375201. [Google Scholar] [CrossRef]
- Geng, X.G.; Zeng, X. Algebro-geometric quasi-periodic solutions to the Satsuma-Hirota hierarchy. Physica D 2023, 448, 133738. [Google Scholar] [CrossRef]
- Krichever, I.; Mineev-Weinstein, M.; Wiegmann, P.; Zabrodin, A. Laplacian growth and Whitham equations of soliton theory. Physica D 2004, 198, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Krichever, I. Algebraic-geometrical n-orthogonal curvilinear coordinate systems and solutions of the associativity equations. Funct. Anal. Appl. 1997, 31, 25–39. [Google Scholar] [CrossRef]
- Karney, C.F.F.; Sen, A.; Chu, F.Y.F. Nonlinear evolution of lower hybrid waves. Phys. Fluids 1979, 22, 940–952. [Google Scholar] [CrossRef] [Green Version]
- Gorbacheva, O.B.; Ostrovsky, L.A. Nonlinear vector waves in a mechanical model of a molecular chain. Phys. D 1983, 8, 223–228. [Google Scholar] [CrossRef]
- Erbay, H.A. Nonlinear transverse waves in a generalized elastic solid and the complex modified Korteweg-de Vries equation. Phys. Scrip. 1998, 58, 9–14. [Google Scholar] [CrossRef]
- Xu, T.X.; Qiao, Z.J. Darboux transformation and shocksolitons for complex mKdV equation. Pac. J. Appl. Math. 2010, 3, 1–10. [Google Scholar]
- Zhang, W.X.; Liu, Y.Q. Solitary wave solutions and integrability for generalized nonlocal complex modified Korteweg-de Vries (cmKdV) equations. AIMS Math. 2021, 6, 11046–11075. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, H.H. Robust inverse scattering method to the complex modified Korteweg-de Vries equation with nonzero background condition. Phys. Lett. A 2022, 449, 128359. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Tao, X.X.; Xu, S.W. The bound-state soliton solutions of the complex modified KdV equation. Inverse Prob. 2020, 36, 065003. [Google Scholar] [CrossRef]
- Wang, X.B.; Han, B. Application of the Riemann-Hilbert method to the vector modified Korteweg-de Vries equation. Nonlinear Dyn. 2020, 99, 1363–1377. [Google Scholar] [CrossRef]
- Kodama, Y.; Pierce, V.U.; Tian, F.R. On the Whitham equations for the defocusing complex modified KdV equation. SIAM J. Math. Anal. 2008, 40, 1750–1782. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.S.; Xu, L.; Xuan, Z.X. The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation. J. Nonlinear Sci. 2022, 32, 3. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Wang, D.S. Exotic wave patterns in Riemann problem of the high-order Jaulent-Miodek equation: Whitham modulation theory. Stud. Appl. Math. 2022, 149, 588–630. [Google Scholar] [CrossRef]
- Tian, F.R. Oscillations of the zero dispersion limit of the Korteweg-de Vries equation. Commun. Pure. Appl. Math. 1993, 46, 1093–1129. [Google Scholar] [CrossRef]
- Pavlov, M.V. Nonlinear Schrödinger equation and the Bogolyubov-Whitham method of averaging. Theor. Math. Phys. 1987, 71, 584–588. [Google Scholar] [CrossRef]
- Novikov, S. The geometry of conservative systems of hydrodynamic type. The method of averaging for field-theoretical systems. Russ. Math. Surv. 1985, 40, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.; Biondini, G.; Wang, Q. Whitham modulation theory for the two-dimensional Benjamin-Ono equation. Phys. Rev. E 2017, 96, 032225. [Google Scholar] [CrossRef] [Green Version]
- Tsarev, S. Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type. Sov. Math. Dokl. 1985, 31, 488–491. [Google Scholar]
- Jenkins, R. Regularization of a sharp shock by the defocusing nonlinear Schrödinger equation. Nonlinearity 2014, 28, 2131–2180. [Google Scholar] [CrossRef] [Green Version]
- Lax, P.D. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves; New York University: New York, NY, USA, 1973; pp. 24–33. [Google Scholar]
- Levermore, C.D. The hyperbolic nature of the zero dispersion KdV limit. Commun. Partial. Differ. Equ. 1988, 13, 495–514. [Google Scholar] [CrossRef]
- Esen, A.; Tasbozan, O. Numerical solution of time fractional nonlinear Schrödinger equation arising in quantum mechanics by cubic B-spline finite elements. Malaya J. Mat. 2015, 3, 387–397. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, S.; Liu, Y. The Whitham Modulation Solution of the Complex Modified KdV Equation. Mathematics 2023, 11, 2810. https://doi.org/10.3390/math11132810
Zeng S, Liu Y. The Whitham Modulation Solution of the Complex Modified KdV Equation. Mathematics. 2023; 11(13):2810. https://doi.org/10.3390/math11132810
Chicago/Turabian StyleZeng, Shijie, and Yaqing Liu. 2023. "The Whitham Modulation Solution of the Complex Modified KdV Equation" Mathematics 11, no. 13: 2810. https://doi.org/10.3390/math11132810
APA StyleZeng, S., & Liu, Y. (2023). The Whitham Modulation Solution of the Complex Modified KdV Equation. Mathematics, 11(13), 2810. https://doi.org/10.3390/math11132810