# From Ion Fluxes in Living Cells to Metabolic Power Considerations

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

- Healthy cells use the Krebs cycle, based on the oxidation of acetyl-CoA, derived from carbohydrates, fats, and proteins;
- Cancer cells use the Warburg cycle, which is a modified cell metabolism that favours a specialised fermentation over the aerobic respiration pathway.

## 2. Materials and Methods

## 3. Results

## 4. Discussion and Conslusions

- Mitogen-stimulated cell proliferation, mediated by K${}^{+}$ channel [44];
- K${}^{+}$ channel inhibitors can block the activation of murine B lymphocytes and murine noncytolytic T lymphocytes [45];
- Ca${}^{2+}$ inflow drives G1/S transition [46];
- Mice teratocarcinoma cells express L-type Ca${}^{2+}$ and outward channels, and Na${}^{+}$ and inward rectifier channels during differentiation.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Chester, M. Second Sound in Solids. Phys. Rev.
**1963**, 131, 2013. [Google Scholar] [CrossRef] - Weymann, H.D. Finite Speed of Propagation in Heat conduction, Diffusion and Viscous Shear Motion. Am. J. Phys.
**1967**, 35, 488–496. [Google Scholar] [CrossRef] - Tzou, D.Y. The resonance phenomenon in thermal waves. Int. J. Eng. Sci.
**1991**, 29, 1167–1177. [Google Scholar] [CrossRef] - Peshkov, V. Second Sound in Helium II. J. Phys.
**1944**, 8, 381–389. [Google Scholar] - Kaminski, W. Hyperbolic Heat Conduction Equation for Materials With Nonhomogeneous Inner Structure. J. Heat Mass Transf.
**1990**, 112, 555–560. [Google Scholar] [CrossRef] - Özişik, M.N.; Vick, B. Propagation and Reflection of Thermal Waves in a Finite. Medium. Int. J. Heat Mass Transf.
**1984**, 27, 1845–1854. [Google Scholar] [CrossRef] - Tzou, D.Y. On the Thermal Shock Wave Induced by a Moving Heat Source. ASME Int. J. Heat Mass Transf.
**1989**, 111, 232–238. [Google Scholar] [CrossRef] - Tzou, D.Y. Thermal Shock Waves Induced by a Moving Crack. ASME Int. J. Heat Mass Transf.
**1990**, 112, 21–27. [Google Scholar] [CrossRef] - Tzou, D.Y. The effects of thermal shock waves on the crack initiation around a moving heat source. Eng. Fract. Mech.
**1989**, 34, 1109–1118. [Google Scholar] [CrossRef] - Glass, D.E.; Özişik, M.N.; Vick, B. Non-Fourier effects on transient temperature resulting from periodic on-off heat flux. Int. J. Heat Mass Transf.
**1987**, 30, 1623–1631. [Google Scholar] [CrossRef] - Feynman, R.; Leighton, R.; Sands, M. The Feynman Lectures on Physics, Volume I; Addison Wesley: Reading, UK, 2005. [Google Scholar]
- Lucia, U.; Grisolia, G. Resonance in thermal fluxes through cancer membrane. AAPP Atti Della Accad. Peloritana Dei Pericolanti
**2020**, 98, SC11–SC16. [Google Scholar] [CrossRef] - Lucia, U.; Grisolia, G. Thermal resonance and cell behavior. Entropy
**2020**, 22, 774. [Google Scholar] [CrossRef] - Lucia, U.; Grisolia, G. Thermal resonance in living cells to control their heat exchange: Possible applications in cancer treatment. Int. Commun. Heat Mass Transf.
**2022**, 131, 105842. [Google Scholar] [CrossRef] - Lucia, U.; Grisolia, G.; Ponzetto, A.; Bergandi, L.; Silvagno, F. Thermomagnetic resonance affects cancer growth and motility: Thermomagnetic resonance and cancer. R. Soc. Open Sci.
**2020**, 7, 200299. [Google Scholar] [CrossRef] - Lucia, U.; Grisolia, G.; Ponzetto, A.; Silvagno, F. An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth. J. Theor. Biol.
**2017**, 429, 181–189. [Google Scholar] [CrossRef] - Bergandi, L.; Lucia, U.; Grisolia, G.; Granata, R.; Gesmundo, I.; Ponzetto, A.; Paolucci, E.; Borchiellini, R.; Ghigo, E.; Silvagno, F. The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift. Biochim. Biophys. Acta
**2019**, 1866, 1389–1397. [Google Scholar] [CrossRef] - Katchalsky, A.; Kedem, O. Thermodynamics of Flow Processes in Biological Systems. Biophys. J.
**1962**, 2, 53–78. [Google Scholar] [CrossRef] [Green Version] - Voet, D.; Voet, J.G. Biochemistry, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Schrödinger, E. What’s Life? The Physical Aspect of the Living Cell; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Callen, H.B. Thermodynamics; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Lucia, U.; Grisolia, G. Biofuels from Micro-Organisms: Thermodynamic Considerations on the Role of Electrochemical Potential on Micro-Organisms Growth. Appl. Sci.
**2021**, 11, 2591. [Google Scholar] [CrossRef] - Lucia, U.; Grisolia, G. Non-equilibrium thermodynamic approach to Ca
^{2+}-fluxes in cancer. Appl. Sci.**2020**, 10, 6737. [Google Scholar] [CrossRef] - Lucia, U. Bioengineering thermodynamics: An engineering science for thermodynamics of biosystems. Int. J. Thermodyn.
**2015**, 18, 254–265. [Google Scholar] [CrossRef] [Green Version] - Lucia, U.; Grisolia, G. Thermal Physics and Glaucoma: From Thermodynamic to Biophysical Considerations to Designing Future Therapies. Appl. Sci.
**2020**, 10, 7071. [Google Scholar] [CrossRef] - Rizzuto, R.; Marchi, S.; Bonora, M.; Aguiari, P.; Bononi, A.; Stefani, D.D.; Giorgi, C.; Leo, S.; Rimessi, A.; Siviero, R.; et al. Ca
^{2+}transfer from the ER to mitochondria: When, how and why. Biochim. Biophys. Acta**2009**, 1787, 1342–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol.
**2003**, 4, 517–529. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Foyouzi-Youssefi, R.; Arnaudeau, S.; Borner, C.; Kelley, W.L.; Tschopp, J.; Lew, D.P.; Demaurex, N.; Krause, K.H. Bcl-2 decreases the free Ca
^{2+}concentration within the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA**2000**, 97, 5723–5728. [Google Scholar] [CrossRef] [Green Version] - Akl, H.; Vervloessem, T.; Kiviluoto, S.; Bittremieux, M.; Parys, J.B.; Smedt, H.D.; Bultynck, G. A dual role for the anti-apoptotic Bcl-2 protein in cancer: Mitochondria versus endoplasmic reticulum. Biochim. Biophys. Acta
**2014**, 1843, 2240–2252. [Google Scholar] [CrossRef] [Green Version] - Akl, H.; Bultynck, G. Altered Ca
^{2+}signaling in cancer cells: Proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim. Biophys. Acta**2013**, 1835, 180–193. [Google Scholar] [CrossRef] - Giorgi, C.; Ito, K.; Lin, H.K.; Santangelo, C.; Wieckowski, M.R.; Lebiedzinska, M.; Bononi, A.; Bonora, M.; Duszynski, J.; Bernardi, R.; et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science
**2019**, 330, 1247–1251. [Google Scholar] [CrossRef] [Green Version] - Parsadaniantz, S.M.; le Goazigo, A.R.; Sapienza, A.; Habas, C.; Baudouin, C. Glaucoma: A Degenerative Optic Neuropathy Related to Neuroinflammation? Cells
**2020**, 9, 535. [Google Scholar] [CrossRef] [Green Version] - Soto, I.; Howell, G.R. The complex role of neuroinflammation in glaucoma. Cold Spring Harb. Perspect. Med.
**2014**, 4, a017269. [Google Scholar] [CrossRef] - Yourgrau, W.; van der Merwe, A.; Raw, G. Treatise on Irreversible and Statistical Thermophysics; Dover: New York, NY, USA, 1982. [Google Scholar]
- Goupil, C.; Seifert, W.; Zabrocki, K.; Müller, E.; Snyder, G.J. Thermodynamics of Thermoelectric Phenomena and Applications. Entropy
**2011**, 13, 1481–1517. [Google Scholar] [CrossRef] [Green Version] - Degroot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Apostol, T.S. Calculus. Volume 2: Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability; Wiley: Hoboken, NJ, USA, 1969. [Google Scholar]
- Sherwood, L. Human Physiology: From Cells to Systems; Brooks Cole: Andover, MA, USA, 2009. [Google Scholar]
- Prigogine, I. Etude Thermodynamique des Phénoménes Irréversibles; Desoer: Liége, Belgium, 1947. [Google Scholar]
- Milo, R.; Phillips, R. Cell Biology by the Numbers; Garland Science: New York, NY, USA, 2003. [Google Scholar]
- Mercer, W.B. Technical Manuscript 640—The Living Cell as an Open Thermodynamic System: Bacteria and Irreversible Thermodynamica; Department of the U.S. Army-Fort Detrick: Frederic, MA, USA, 1971. [Google Scholar]
- Tuszynski, J.A. Molecular and Cellular Biophysics; CRC: Boca Raton, FL, USA, 2019. [Google Scholar]
- Sundelacruz, S.; Levin, M.; Kaplan, D.L. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. Rep.
**2009**, 5, 231–246. [Google Scholar] [CrossRef] - Wonderlin, W.F.; Strobl, J.S. Potassium channels, proliferation and G1 progression. J. Membr. Biol.
**1996**, 154, 91–107. [Google Scholar] [CrossRef] - Ouadid-Ahidouch, H.; Le Bourhis, X.; Roudbaraki, M.; Toillon, R.A.; Delcourt, P.; Prevarskaya, N. Changes in the K
^{+}current-density of MCF-7 cells during progression through the cell cycle: Possible involvement of a h-ether.a-gogo K^{+}channel. Recept. Channels**2001**, 7, 345–356. [Google Scholar] - Ouadid-Ahidouch, H.; Ahidouch, A. K
^{+}channel expression in human breast cancer cells: Involvement in cell cycle regulation and carcinogenesis. J. Membr. Biol.**2008**, 221, 1–6. [Google Scholar] [CrossRef]

**Table 1.**Concentration, chemical potential (in water solution), and electric membrane potential of some ions in normal cells [42].

Ion | Extracellular | Intracellular | Chemical | Membrane |
---|---|---|---|---|

Species | Concentration | Concentration | Potential ${\mathit{\mu}}_{\mathit{i}}$ | Potential ${\mathit{E}}_{\mathit{i}}$ |

[mM] | [mM] | [kJ mol${}^{-\mathbf{1}}$] | [mV] | |

Na${}^{+}$ | 18 | 150 | −261.89 | +56 |

K${}^{+}$ | 140 | 5 | −283.26 | −89 |

Cl${}^{-}$ | 120 | 7 | −131.26 | −76 |

Ca${}^{2+}$ | 1.2 | 0.1 | −553.04 | +125 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lucia, U.; Grisolia, G.
From Ion Fluxes in Living Cells to Metabolic Power Considerations. *Mathematics* **2023**, *11*, 2645.
https://doi.org/10.3390/math11122645

**AMA Style**

Lucia U, Grisolia G.
From Ion Fluxes in Living Cells to Metabolic Power Considerations. *Mathematics*. 2023; 11(12):2645.
https://doi.org/10.3390/math11122645

**Chicago/Turabian Style**

Lucia, Umberto, and Giulia Grisolia.
2023. "From Ion Fluxes in Living Cells to Metabolic Power Considerations" *Mathematics* 11, no. 12: 2645.
https://doi.org/10.3390/math11122645