On Reusing the Stages of a Rejected Runge-Kutta Step
Abstract
:1. Introduction
2. The New Step-Size Control Scheme
3. Evaluation of a Mew-Extended Runge-Kutta Pair
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hairer, E.; Norsett, S.P.; Wanner, G. Solving Ordinary Differential Equations I: Nonstiff Problems; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Fehlberg, C. Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control; NASA Technical Report-287; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 1969.
- Prince, P.J.; Dormand, J.R. High order embedded Runge-Kutta Formulae. J. Comput. Appl. Math. 1981, 7, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Dormand, J.R.; Prince, P.J. A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 1980, 6, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Tsitouras, C. A parameter study of explicit Runge-Kutta pairs of orders 6(5). Appl. Math. Lett. 1998, 11, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Dormand, J.R.; Lockyer, M.A.; McGorrigan, N.E.; Prince, P.J. Global error estimation with Runge-Kutta triples. Comput. Math. Appl. 1989, 18, 835–846. [Google Scholar] [CrossRef] [Green Version]
- Wolfram Research, Inc. Mathematica; Version 11.3.0; Wolfram Research, Inc.: Champaign, IL, USA, 2018. [Google Scholar]
- Verner, J.H. Differentiable Interpolants for high-Order Runge-Kutta Methods. SIAM J. Numer. Anal. 1993, 30, 1446–1466. [Google Scholar] [CrossRef]
- Tsitouras, C. A tenth order symplectic Runge–Kutta–Nyström method. Celest. Mech. Dyn. Astron. 1999, 74, 223–230. [Google Scholar] [CrossRef]
- Enright, W.; Pryce, J.D. Two FORTRAN packages for assessing initial value methods. ACM Trans. Math. Softw. 1987, 13, 1–27. [Google Scholar] [CrossRef]
- Kovalnogov, V.N.; Fedorov, R.V.; Chukalin, A.V.; Simos, T.E.; Tsitouras, C. Evolutionary Derivation of Runge–Kutta Pairs of Orders 5(4) Specially Tuned for Problems with Periodic Solutions. Mathematics 2021, 9, 2306. [Google Scholar] [CrossRef]
- Shampine, L.F. Some practical Runge-Kutta formulas. Math. Comp. 1986, 46, 135–150. [Google Scholar] [CrossRef]
- Zhao, K. Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations. AIMS Math. 2023, 8, 13351–13367. [Google Scholar] [CrossRef]
- Zhao, K. Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions. Filomat 2023, 37, 1053–1063. [Google Scholar]
, | , | , |
, | , | , |
, | , | , |
, | , | , |
, | , | , |
, | , | , |
, | , | , |
, | , | , |
, | , | , |
, | , | , |
, | , | , |
, | , | , |
. |
, | , | , |
, | , | , |
, | , | , |
, | , | , |
, | , | , |
, | . |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | |
, | |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, |
Accepted Steps | Rejected Steps | Extended Steps | End Point Error | Efficiency (4) | |
---|---|---|---|---|---|
60 | 24 | 0 | |||
78 | 29 | 0 | |||
108 | 39 | 0 | |||
151 | 48 | 0 | |||
215 | 58 | 0 | |||
303 | 10 | 0 |
Accepted Steps | Rejected Steps | Extended Steps | End Point Error | Efficiency (4) | |
---|---|---|---|---|---|
58 | 7 | 13 | |||
76 | 5 | 13 | |||
107 | 0 | 20 | |||
155 | 0 | 26 | |||
224 | 0 | 36 | |||
307 | 0 | 9 |
Accepted Steps | Rejected Steps | Extended Steps | End Point Error | Efficiency (4) | |
---|---|---|---|---|---|
90 | 29 | 0 | |||
118 | 45 | 0 | |||
160 | 58 | 0 | |||
223 | 75 | 0 | |||
316 | 92 | 0 | |||
449 | 64 | 0 |
Accepted Steps | Rejected Steps | Extended Steps | End Point Error | Efficiency (4) | |
---|---|---|---|---|---|
89 | 18 | 10 | |||
117 | 23 | 13 | |||
158 | 3 | 27 | |||
227 | 0 | 40 | |||
327 | 0 | 52 | |||
457 | 0 | 36 |
Accepted Steps | Rejected Steps | Extended Steps | End Point Error | Efficiency (4) | |
---|---|---|---|---|---|
50 | 25 | 0 | |||
71 | 31 | 0 | |||
102 | 32 | 0 | |||
146 | 42 | 0 | |||
207 | 41 | 0 | |||
298 | 33 | 0 |
Accepted Steps | Rejected Steps | Extended Steps | End Point Error | Efficiency (4) | |
---|---|---|---|---|---|
51 | 4 | 14 | |||
73 | 6 | 16 | |||
104 | 0 | 21 | |||
149 | 3 | 24 | |||
210 | 4 | 19 | |||
302 | 1 | 19 |
Accepted Steps | Rejected Steps | Extended Steps | End Point Error | Efficiency (4) | |
---|---|---|---|---|---|
61 | 23 | 0 | |||
81 | 29 | 0 | |||
111 | 42 | 0 | |||
155 | 49 | 0 | |||
219 | 47 | 0 | |||
315 | 44 | 0 |
Accepted Steps | Rejected Steps | Extended Steps | End Point Error | Efficiency (4) | |
---|---|---|---|---|---|
62 | 16 | 5 | |||
81 | 16 | 7 | |||
113 | 12 | 18 | |||
157 | 0 | 26 | |||
225 | 0 | 30 | |||
320 | 0 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalnogov, V.N.; Fedorov, R.V.; Karpukhina, T.V.; Simos, T.E.; Tsitouras, C. On Reusing the Stages of a Rejected Runge-Kutta Step. Mathematics 2023, 11, 2589. https://doi.org/10.3390/math11112589
Kovalnogov VN, Fedorov RV, Karpukhina TV, Simos TE, Tsitouras C. On Reusing the Stages of a Rejected Runge-Kutta Step. Mathematics. 2023; 11(11):2589. https://doi.org/10.3390/math11112589
Chicago/Turabian StyleKovalnogov, Vladislav N., Ruslan V. Fedorov, Tamara V. Karpukhina, Theodore E. Simos, and Charalampos Tsitouras. 2023. "On Reusing the Stages of a Rejected Runge-Kutta Step" Mathematics 11, no. 11: 2589. https://doi.org/10.3390/math11112589
APA StyleKovalnogov, V. N., Fedorov, R. V., Karpukhina, T. V., Simos, T. E., & Tsitouras, C. (2023). On Reusing the Stages of a Rejected Runge-Kutta Step. Mathematics, 11(11), 2589. https://doi.org/10.3390/math11112589