Sandwich-Type Theorems for a Family of Non-Bazilevič Functions Involving a q-Analog Integral Operator
Abstract
:1. Introduction to Differential Subordination
2. Main Concepts of Quantum Calculus
3. Main Lemmas
4. Differential Subordination and Sandwich-Type Results
- 1.
- If and the subordination conditions in Theorem 4 hold, then
- 2.
- If and the subordination conditions in Corollary 5 hold, and if the operator is replaced with , then
- 1.
- The following inequality satisfies
- 2.
- Let , and we obtain
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Differential subordinations: Theory and applications. In Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Bulboacă, T. A class of superordination-preserving integral operators. Indag. Mathem. N. S. 2002, 13, 301–311. [Google Scholar] [CrossRef]
- Bulboacă, T. Classes of first order differential superordinations. Demonstr. Math. 2002, 35, 287–292. [Google Scholar] [CrossRef]
- Ali, R.M.; Ravichandran, V.; Khan, M.H.; Subramanian, K.G. Differential sandwich theorems for certain analytic functions. Far East J. Math. Sci. 2004, 15, 87–94. [Google Scholar]
- Tuneski, N. On certain sufficient conditions for starlikeness. Int. J. Math. Math. Sci. 2000, 3, 521–527. [Google Scholar] [CrossRef]
- Shanmugam, T.N.; Ravichandran, V.; Sivasubramanian, S. Differential sandwich theorems for some subclasses of analytic functions. Aust. J. Math. Anal. Appl. 2006, 3, 1–11. [Google Scholar]
- Shanmugam, T.N.; Sivasubramanian, S.; Darus, M.; Kavitha, S. On sandwich theorems for certain subclasses of non-Bazilevič functions involving Cho-Kim transformation. Complex Var. Elliptic Equ. 2007, 52, 1017–1028. [Google Scholar] [CrossRef]
- Lupaş, A.A.; Ghanim, F. Strong differential subordination and superordination results for extended q-analogue of multiplier transformation. Symmetry 2023, 15, 713. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef]
- Attiya, A.A.; Yassen, M.F. Some subordination and superordination results associated with generalized Srivastava-Attiya operator. Filomat 2017, 31, 53–60. [Google Scholar] [CrossRef]
- Aouf, M.K.; Frasin, B.A.; Murugusundaramoorthy, G. Subordination results for a class of analytic functions. Moroc. J. Pure Appl. Anal. (MJPAA) 2020, 7, 30–42. [Google Scholar] [CrossRef]
- Frasin, B.A.; Murugusundaramoorthy, G. A subordination results for a class of analytic functions defined by q-differential operator. Ann. Univ. Paedagog. Crac. Stud. Math. 2020, 19, 53–64. [Google Scholar] [CrossRef]
- Prajapat, J.K. Subordination and superordination preserving properties for generalized multiplier transformation operator. Math. Comput. Model. 2012, 55, 1456–1465. [Google Scholar] [CrossRef]
- Challab, K.A.; Darus, M.; Ghanim, F. Some application on Hurwitz Lerch Zeta function defined by a generalization of the Srivastava-Attiya operator. Kragujev. J. Math. 2019, 43, 201–217. [Google Scholar]
- Atshan, W.G.; Hiress, R.A.; Altınkaya, S. On Third-Order Differential Subordination and Superordination Properties of Analytic Functions Defined by a Generalized Operator. Symmetry 2022, 14, 418. [Google Scholar] [CrossRef]
- Mihsin, B.K.; Atshan, W.G.; Alhily, S.S.; Lupaş, A.A. New Results on Fourth-Order Differential Subordination and Superordination for Univalent Analytic Functions Involving a Linear Operator. Symmetry 2022, 14, 324. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ghanim, F.; Bendak, S.; Al Hawarneh, A. Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions. Proc. R. Soc. A 2022, 478, 20210839. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M.; Park, C.; Lee, J.R. Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function. AIMS Math. 2022, 7, 11772–11783. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M. (p,q)-Chebyshev polynomials for the families of biunivalent function associating a new integral operator with (p,q)-Hurwitz zeta function. Turk. J. Math. 2022, 46, 25. [Google Scholar] [CrossRef]
- Alatawi, A.; Darus, M.; Alamri, B. Applications of Gegenbauer polynomials for subfamilies of bi-univalent functions involving a Borel distribution-type Mittag-Leffler function. Symmetry 2023, 15, 785. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. Int. J. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T. Differential sandwich-type results for symmetric functions connected with a q-analog integral operator. Mathematics 2019, 7, 1185. [Google Scholar] [CrossRef]
- Khan, Q.; Arif, M.; Raza, M.; Srivastava, G.; Tang, H.; Rehman, S.U. Some applications of a new integral operator in q-analog for multivalent functions. Mathematics 2019, 7, 1178. [Google Scholar] [CrossRef]
- Shamsan, H.; Latha, S. On generalized bounded mocanu variation related to q-derivative and conic regions. Ann. Pure Appl. Math. 2018, 17, 67–83. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Hadi, S.H.; Darus, M. Some subclasses of p-valent γ-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2023, 117, 50. [Google Scholar] [CrossRef]
- Breaz, D.; Alahmari, A.A.; Cotîrlă, L.-I.; Ali Shah, S. On Generalizations of the Close-to-Convex Functions Associated with q-Srivastava–Attiya Operator. Mathematics 2023, 11, 2022. [Google Scholar] [CrossRef]
- Shah, S.A.; Noor, K.I. Study on the q-analogue of a certain family of linear operators. Turk. J. Math. 2019, 43, 2707–2714. [Google Scholar] [CrossRef]
- Cheng, Y.; Srivastava, R.; Liu, J.-L. Applications of the q-derivative operator to new families of bi-univalent functions related to the Legendre polynomials. Axioms 2022, 11, 595. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Arjika, S.; Khan, S.; Khan, N.; Ahmad, Q.Z. A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions. Adv. Differ. Equ. 2021, 2021, 279. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
- Deniz, E.; Kamali, M.; Korkmaz, S. A certain subclass of bi-univalent functions associated with bell numbers and q-Srivastava Attiya operator. AIMS Math. 2020, 5, 7259–7271. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, C.; Liao, M. On certain generalized class of non-Bazilevič functions. Acta Math. Acad. Paed. Nyireyhaziensis 2005, 21, 147–154. [Google Scholar]
- Obradovic, M. A class of univalent functions. Hokkaido Math. J. 1998, 27, 329–335. [Google Scholar] [CrossRef]
- Tuneski, N.; Darus, M. Fekete-Szegö functional for non-Bazilevič functions. Acta Math. Acad. Paed. Nyireyhaziensis 2002, 18, 63–65. [Google Scholar]
- Kumar, V.; Nagpal, S.; Cho, N.E. Coefficient functionals for non-Bazilevič functions. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2022, 116, 44. [Google Scholar] [CrossRef]
- Auof, M.K.; Mostafa, A.O. Subordination results for a class of multivalent non-Bazilevič analytic functions defined by linear operator. Acta Univ. Apulensis 2012, 31, 307–320. [Google Scholar]
- Liu, M.S. On certain subclass of analytic functions. J. South China Norm. Univ. Natur. Sci. Ed. 2002, 4, 15–20. [Google Scholar]
- Bernardi, S.D. New distortion theorems for functions of positive real part and applications to the partial sums of univalent convex functions. Proc. Am. Math. Soc. 1974, 45, 113–118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadi, S.H.; Darus, M.; Ghanim, F.; Alb Lupaş, A. Sandwich-Type Theorems for a Family of Non-Bazilevič Functions Involving a q-Analog Integral Operator. Mathematics 2023, 11, 2479. https://doi.org/10.3390/math11112479
Hadi SH, Darus M, Ghanim F, Alb Lupaş A. Sandwich-Type Theorems for a Family of Non-Bazilevič Functions Involving a q-Analog Integral Operator. Mathematics. 2023; 11(11):2479. https://doi.org/10.3390/math11112479
Chicago/Turabian StyleHadi, Sarem H., Maslina Darus, Firas Ghanim, and Alina Alb Lupaş. 2023. "Sandwich-Type Theorems for a Family of Non-Bazilevič Functions Involving a q-Analog Integral Operator" Mathematics 11, no. 11: 2479. https://doi.org/10.3390/math11112479
APA StyleHadi, S. H., Darus, M., Ghanim, F., & Alb Lupaş, A. (2023). Sandwich-Type Theorems for a Family of Non-Bazilevič Functions Involving a q-Analog Integral Operator. Mathematics, 11(11), 2479. https://doi.org/10.3390/math11112479