Application of Fuzzy Network Using Efficient Domination
Abstract
:1. Introduction
2. Preliminaries
3. Efficient Domination in Fuzzy Graph
4. Encryption and Decryption of Fuzzy Network Using Efficient Domination
- (a)
- The construction of SFN from sub-SFN, where SFN is a strong fuzzy network;
- (b)
- Secret key generation;
- (c)
- An encryption algorithm;
- (d)
- A decryption algorithm.
4.1. Construction of SFN from Sub-SFN
4.2. Secret Key
4.3. Encryption Algorithm
Algorithm 1: Encryption Algorithm | ||||
function subdivide_secret_number (NuVa, rm): | ||||
NuVa_sub = [] for i in range(rm): | ||||
NuVa_sub.append(NuVa % (i + 1)) | ||||
return NuVa_sub | ||||
function construcI_networkI efficient_dominating_nodes): | ||||
sub_networks = [] for i in range(r): | ||||
sub_networks.append(SubNetwork(efficient_dominating_nodes[i])) | ||||
return sub_networks | ||||
function min_edges(sub_networks): | ||||
min_e = set() for i in range(len(sub_networks)): | ||||
for j in range(1, len(sub_networks[i].neighbors) + 1): | ||||
min_e.add((sub_networks[i].center,sub_networks[i].neighbors[j − 1])) | ||||
return min_e | ||||
function max_edges(sub_networks): | ||||
max_e = set() for a in range(1, total_nodes + 1): | ||||
for b in range(1, total_nodes + 1): | ||||
if a! = b and not aIy([a = sub_networks[i].center and b = sub_networks[i + 1].center for i in range(len(sub_networks) − 1)]): | ||||
max_e.add((a, b)) | ||||
return max_e | ||||
function split_D_values(NuVa_sub): | ||||
D_values = [] for i in range(len(NuVa_sub)): | ||||
D_values.append(calculate_D(NuVa_sub[i])) | ||||
return D_vaIues | ||||
function assign_membership_values(sub_networks, D_values): | ||||
for i in range(len(sub_networks)): | ||||
for j in range(len(sub_networks[i].neighbors)): | ||||
membership_value = min(sub_networks[i].center, sub_networks[i].neighbors[j]) sub_networks[i].neighbors[j].membership_value = D_values[i][j] | ||||
# Main function NuVa_sub = subdivide_secret_number(NuVa, rm) sub_networks = construct_network(r, efficient_dominating_nodes) min_e = min_edges(sub_networks) max_e = max_edges(sub_networks) D_values = split_D_values(NuVa_sub) assign_membership_values(sub_networks, D_values) |
4.4. Decryption Algorithm
Algorithm 2: Decryption Algorithm | ||||
function efficient_dominating_members(FSN, r): | ||||
# Find r verticIs with nIommon neighbors dominating_members = empty array of size r for i in range(r): | ||||
# Find efficiently dominating member oioi = find_efficient_member(FSN, dominating_members)# Add oi to the list of dominating membersdominating_members[i] = oi | ||||
return dominating_members | ||||
function find_efficient_member(FSN, dominating_members): | ||||
# Find an efficiently dominating member that has no common neighbors with other members for vertex in FSN.vertices: | ||||
if vertex not in dominating_members: | ||||
is_efficient = check_efficiency(FSN, vertex, dominating_members)if is_efficient: | ||||
return vertex | ||||
return None | ||||
function check_efficiency(FSN, vertex, dominating_members): | ||||
# Check if the vertex is an efficiently dominating member that has no common neighbors with other members neighbors = FSN.get_neighbors(vertex) for member in dominating_members: | ||||
member_neighbors = FSN.get_neighbors(member)common_neighbors = neighbors.intersection(member_neighbors)if len(common_neighbors) > 0: | ||||
return False | ||||
return FSN.is_efficient(vertex) | ||||
function compute_values(FSN, dominating_members): | ||||
# CompuIe the vaIs Vi for each dominating member values = empty array of size r for i in range(r): | ||||
vertex = dominating_members[i]D_vi = compute_D(FSN.secret_number, FSN.rm, FSN.Rm[vertex])dj_values = compute_dj_values(FSN, vertex)Vi = D_vi * np.sum(dj_values)values[i] = Vi | ||||
return values | ||||
function compute_NuVa(rm, values): | ||||
# Compute NuVa as rm times the sum of the Vi values NuVa = rm * np.sum(values) return NuVa | ||||
# Main FSN = create_FSN() # create a FSN object with a secret number and network structure r = random_number dominating_members = efficient_dominating_members(FSN, r) values = compute_values(FSN, dominating_members) NuVa = compute_NuVa(FSN.rm, values) print(NuVa) |
5. Illustration
5.1. Construction of SFN from Sub-SFN
5.2. Secret Key
5.3. Encryption Algorithm
5.4. Decryption Algorithm
5.5. Encryption and Decryption of Intuitionistic Fuzzy Network (IFN) Using Efficient Domination
- (i)
- Vs = {o1,o2,…,on} such that ; and denote the degree of truth membership value, degree of indeterminacy membership value, and degree of falsity membership value, respectively, and for every
- (ii)
- ; are defined by ; denote the degree of truth membership value and degree of falsity membership value of the edge , respectively, where .
5.6. Illustration
6. Real-Time Applications
6.1. Telecommunications Networks
6.2. Transportation Systems
6.3. Social Network Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Bondy, J.A.; Murthy, U.S.R. Graph Theory with Applications; American Elsevier Publishing Co., Ltd.: New York, NY, USA, 1976. [Google Scholar]
- Ore, O. Theory of Graphs; American Mathematical Society: Providence, RI, USA, 1962. [Google Scholar]
- Haynes, W.T.; Slater, J.P. Paired-Domination in Graphs. Networks 1998, 32, 199–206. [Google Scholar] [CrossRef]
- Biggs, N. Perfect Codes in Graphs. J. Comb. Theory Ser. B 1973, 15, 289–296. [Google Scholar] [CrossRef]
- Kulli, V.R. Theory of Domination in Graphs; Vishwa International Publications: Gulbarga, India, 2012. [Google Scholar]
- Kulli, V.R.; Janakiram, B. The Split Domination Number of a Graph. N. Y. Acad. Sci. 1997, 32, 16–19. [Google Scholar]
- Kulli, V.R.; Patwari, D.K. Total Efficient Domination in Graphs. Int. Res. J. Pure Algebra 2016, 6, 227–232. [Google Scholar]
- Cockayne, E.J.; Hedetniemi, S.T. Towards a Theory of Domination in Graphs. Networks 1977, 7, 247–261. [Google Scholar] [CrossRef]
- Swaminathan, V.; Dharmalingam, K.M. Degree Equitable Domination on Graphs. Kragujev. J. Math. 2011, 31, 191–197. [Google Scholar]
- Meenakshi, A.; Baskar, B.J. Paired Equitable Domination in Graphs. Int. J. Pure Appl. Math. 2016, 109, 75–81. [Google Scholar]
- Meenakshi, A. Equitable Domination in Inflated Graphs and Its Complements. AIP Conf. Proc. 2020, 2277, 100006. [Google Scholar]
- Kwon, Y.S.; Lee, J.; Sohn, M.Y. Classification of Efficient Dominating Sets of Circulant Graphs of Degree 5. Graphs Comb. 2022, 38, 120. [Google Scholar] [CrossRef]
- Somasundram, A.; Somasundram, S. Domination in Fuzzy Graphs-I. Pattern Recognit. Lett. 1998, 19, 787–791. [Google Scholar] [CrossRef]
- Nagoorgani, A.; Chandrsekaran, V.T. Domination in Fuzzy Graph. Adv. Fuzzy Sets Syst. 2006, 1, 17–26. [Google Scholar]
- Enriquez, E.; Grace, E. Domination in Fuzzy Directed Graphs. Mathematics 2021, 9, 2143. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic Fuzzy Sets. Int. J. Bioautomation 1999, 20, 1–6. [Google Scholar]
- Karunambigai, M.G.; Parvathi, R.; Bhuvaneswari, R. Constant Intuitionistic Fuzzy Graphs. NIFS 2011, 17, 37–47. [Google Scholar]
- Shannon, A.; Atanassov, K. On a Generalization of Intutionistic Fuzzy Graphs. NIFS 2006, 12, 24–29. [Google Scholar]
- Nagoor, G.A.; Shajitha, B.S. Degree, Order and Size in Intuitionistic Fuzzy Graphs. Comput. Math. 2010, 3, 11–16. [Google Scholar]
- Nagoor, G.A.; Anupriya, S. Split Domination in Intuitionistic Fuzzy Graph. Adv. Comput. Math. Its Appl. 2012, 2, 278–284. [Google Scholar]
- Mullai, M.; Broumi, S.; Jeya, B.R.; Meenakshi, R. Split Domination in Neutrosophic Graphs. Neutrosophic Sets Syst. 2021, 47, 240–249. [Google Scholar]
- Meenakshi, A.; Baskar, B.J. Encryption through Labeling Using Efficient Domination. Asian J. Res. Soc. Sci. Humanit. 2016, 6, 1967. [Google Scholar] [CrossRef]
- Meenakshi, A.; Senbagamalar, J.; Neel, A.A. Encryption Using Graph Networks. In Proceedings of the 2nd International Conference on Mathematical Modeling and Computational Science, ICMMCS, Gandhinagar, India, 12 December 2021; Part of Book Series of Advances in Intelligent Systems and Computing (AICS). Springer: Singapore, 2021; Volume 1422, pp. 123–130. [Google Scholar]
- Cao, K.; Wang, B.; Ding, H.; Lv, L.; Dong, R.; Cheng, T.; Gong, F. Improving Physical Layer Security of Uplink NOMA via Energy Harvesting Jammers. IEEE Trans. Inf. Forensics Secur. 2021, 16, 786–799. [Google Scholar] [CrossRef]
- Song, J.; Mingotti, A.; Zhang, J.; Peretto, L.; Wen, H. Accurate Damping Factor and Frequency Estimation for Damped Real-Valued Sinusoidal Signals. IEEE Trans. Instrum. Meas. 2022, 71, 1–4. [Google Scholar] [CrossRef]
- Li, Q.; Lin, H.; Tan, X.; Du, S. H∞ Consensus for Multiagent-Based Supply Chain Systems Under Switching Topology and Uncertain Demands. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 4905–4918. [Google Scholar] [CrossRef]
- Lu, S.; Ban, Y.; Zhang, X.; Yang, B.; Liu, S.; Yin, L.; Zheng, W. Adaptive control of time delay teleoperation system with uncertain dynamics. Front. Neurorobot. 2022, 16, 152. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhang, L.; Su, Y.; Gao, G.; Liu, Y.; Na, Z.; Xu, Q.; Ding, T.; Xiao, L.; Li, L.; et al. A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification. Nano. Energy 2023, 105, 108013. [Google Scholar] [CrossRef]
- Wu, Y.; Sheng, H.; Zhang, Y.; Wang, S.; Xiong, Z.; Ke, W. Hybrid Motion Model for Multiple Object Tracking in Mobile Devices. IEEE Internet Things J. 2022, 10. [Google Scholar] [CrossRef]
- Zenggang, X.; Mingyang, Z.; Xuemin, Z.; Sanyuan, Z.; Fang, X.; Xiaochao, Z.; Yunyun, W.; Xiang, L. Social Similarity Routing Algorithm based on Socially Aware Networks in the Big Data Environment. J. Signal Process. Syst. 2022, 94, 1253–1267. [Google Scholar] [CrossRef]
- Ni, Q.; Guo, J.; Wu, W.; Wang, H. Influence-Based Community Partition with Sandwich Method for Social Networks. IEEE Trans. Comput. Soc. Syst. 2022, 1–12. [Google Scholar] [CrossRef]
Vertex Degree Membership Values | Edge Degree Membership Values |
---|---|
a (0.4, 0.15) | ab (0.24, 0.25) |
b (0.24, 0.25) | bc (0.14, 0.25) |
c (0.14, 0.2) | cd (0.14, 0.35) |
d (0.25, 0.35) | ab (0.24, 0.25) |
a1 (0.25, 0.15) | aa1 (0.25, 0.15) |
a2 (0.2, 0.5) | aa2 (0.2, 0.5) |
a3 (0.4, 0.25) | cc3 (0.4, 0.25) |
d1 (0.2, 0.4) | dd1 (0.2, 0.4) |
d2 (0.4, 0.62) | dd2 (0.25, 0.62) |
d3 (0.45, 0.2) | dd3 (0.25, 0.35) |
d4 (0.5, 0.4) | dd4 (0.25, 0.4) |
Edges | Degree of Membership Values | Edges | Degree of Membership Values |
---|---|---|---|
o1o11 | (0.1, 0.33) | o33o34 | (0.05, 0.3) |
o1o12 | (0.1, 0.35) | o34o35 | (0.05, 0.25) |
o1o13 | (0.1, 0.32) | o4o41 | (0.1, 0.4) |
o1o14 | (0.1, 0.3) | o4o42 | (0.05, 0.4) |
o1o15 | (0.1, 0.33) | o4o43 | (0.05, 0.4) |
o1o16 | (0.1, 0.3) | o4o44 | (0.05, 0.4) |
o11o21 | (0.1, 0.36) | o4o45 | (0.0506, 0.4) |
o12o26 | (0.1, 0.35) | o41o45 | (0.0506, 0.36) |
o13o26 | (0.1, 0.32) | o41o42 | (0.05, 0.36) |
o11o16 | (0.1, 0.33) | o43o44 | (0.05, 0.3) |
o11o12 | (0.1, 0.36) | o41o53 | (0.05, 0.36) |
o14o15 | (0.1, 0.25) | o45o54 | (0.05, 0.2) |
o15o16 | (0.1, 0.33) | o41o54 | (0.05, 0.2) |
o2o21 | (0.1, 0.36) | o5o51 | (0.05, 0.4) |
o2o22 | (0.1, 0.3) | o5o52 | (0.05, 0.36) |
o2o23 | (0.1, 0.3) | o5o53 | (0.05, 0.4) |
o2o24 | (0.1, 0.3) | o5o54 | (0.05, 0.4) |
o2o25 | (0.1, 0.3) | o5o55 | (0.05, 0.4) |
o2o26 | (0.1002, 0.3) | o5o56 | (0.0608, 0.4) |
o21o26 | (0.1, 0.36) | o14o52 | (0.05, 0.25) |
o25o26 | (0.1, 0.2) | o14o51 | (0.05, 0.36) |
o23o24 | (0.1, 0.3) | o15o56 | (0.0608, 0.33) |
o22o23 | (0.1, 0.35) | o51o56 | (0.05, 0.36) |
o3o31 | (0.05, 0.36) | o51o52 | (0.05, 0.361) |
o3o32 | (0.05, 0.4) | o53o54 | (0.05, 0.35) |
o3o33 | (0.05, 0.4) | o54o55 | (0.05, 0.25) |
o3o34 | (0.05, 0.4) | o24o53 | (0.05, 0.35) |
o3o35 | (0.0504, 0.4) | o34o53 | (0.05, 0.35) |
o31o35 | (0.0504, 0.36) | o45o42 | (0.05, 0.25) |
o32o33 | (0.05, 0.35) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumaran, N.; Meenakshi, A.; Mahdal, M.; Prakash, J.U.; Guras, R. Application of Fuzzy Network Using Efficient Domination. Mathematics 2023, 11, 2258. https://doi.org/10.3390/math11102258
Kumaran N, Meenakshi A, Mahdal M, Prakash JU, Guras R. Application of Fuzzy Network Using Efficient Domination. Mathematics. 2023; 11(10):2258. https://doi.org/10.3390/math11102258
Chicago/Turabian StyleKumaran, Narayanan, Annamalai Meenakshi, Miroslav Mahdal, Jayavelu Udaya Prakash, and Radek Guras. 2023. "Application of Fuzzy Network Using Efficient Domination" Mathematics 11, no. 10: 2258. https://doi.org/10.3390/math11102258
APA StyleKumaran, N., Meenakshi, A., Mahdal, M., Prakash, J. U., & Guras, R. (2023). Application of Fuzzy Network Using Efficient Domination. Mathematics, 11(10), 2258. https://doi.org/10.3390/math11102258