Canonical Concordance Correlation Analysis
Abstract
:1. Introduction
2. Pair Correlation and Canonical Correlations
3. Concordance Correlation Coefficient and Canonical Concordance Correlation Analysis
4. Numerical Example
5. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Mathematical Results
References
- Hotelling, H. Relations between two sets of variates. Biometrika 1936, 28, 321–377. [Google Scholar] [CrossRef]
- Horst, P. Relations among m sets of measures. Psychometrika 1961, 26, 129–149. [Google Scholar] [CrossRef]
- Tishler, A.; Lipovetsky, S. Canonical correlation analyses for three data sets: A unified framework with application to management. Comput. Oper. Res. 1996, 23, 667–679. [Google Scholar] [CrossRef]
- Tishler, A.; Lipovetsky, S. Modeling and forecasting with robust canonical analysis: Method and application. Comput. Oper. Res. 2000, 27, 217–232. [Google Scholar] [CrossRef]
- Kessy, A.; Lewin, A.; Strimmer, K. Optimal whitening and decorrelation. Am. Stat. 2018, 72, 309–314. [Google Scholar] [CrossRef]
- Hardoon, D.; Szedmak, S.; Shawe-Taylor, J. Canonical correlation analysis: An overview with application to learning methods. Neural Comput. 2004, 16, 2639–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipovetsky, S. Dual PLS analysis. Int. J. Inf. Technol. Decis. Mak. 2012, 11, 879–891. [Google Scholar] [CrossRef]
- Lipovetsky, S. Orthonormal canonical correlation analysis. Open Stat. 2021, 2, 24–36. [Google Scholar] [CrossRef]
- Adrover, J.; Donato, S. A robust predictive approach for canonical correlation analysis. J. Multivar. Anal. 2015, 133, 356–376. [Google Scholar] [CrossRef]
- Cao, D.S.; Liu, S.; Zeng, W.B.; Liang, Y.Z. Sparse canonical correlation analysis applied to -omics studies for integrative analysis and biomarker discovery. J. Chemom. 2015, 29, 371–378. [Google Scholar] [CrossRef]
- Wilms, I.; Croux, C. Sparse canonical correlation analysis from a predictive point of view. Biom. J. 2015, 57, 834–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jendoubi, T.; Strimmer, K. A whitening approach to probabilistic canonical correlation analysis for omics data integration. BMC Bioinform. 2019, 20, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lê Cao, K.A.; Welham, Z. Data Integration Using R: Methods and Applications with the mixOmics Package; CRC/Chapman and Hall: Boca Raton, FL, USA, 2022. [Google Scholar]
- Lin, L. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Bottai, M.; Kim, T.; Lieberman, B.; Luta, G.; Pena, E. On optimal correlation-based prediction. Am. Stat. 2022, 76, 313–321. [Google Scholar] [CrossRef]
- Christensen, R. Comment on “On Optimal Correlation-Based Prediction,” by Bottai et al. (2022). Am. Stat. 2022, 76, 322. [Google Scholar] [CrossRef]
- Lipovetsky, S. Comment on “On Optimal Correlation-Based Prediction”, by Bottai et al. (2022). Am. Stat. 2023, 77. forthcoming. [Google Scholar] [CrossRef]
- Gu, M.; Eisenstat, S.C. A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 1994, 15, 1266–1276. [Google Scholar] [CrossRef]
- Betcke, T.; Higham, N.J.; Mehrmann, V.; Schröder, C.H.; Tisseur, F. NLEVP: A Collection of Nonlinear Eigenvalue Problems; MIMS EPrint: Manchester, UK, 2008; pp. 1–18. [Google Scholar]
- Huang, X.; Bai, Z.; Su, Y. Nonlinear rank-one modification of the symmetric eigenvalue problem. J. Comput. Math. 2010, 28, 218–234. [Google Scholar] [CrossRef]
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics; John Wiley& Sons: New York, NY, USA, 1980. [Google Scholar]
- Lipovetsky, S. Data Fusion in Several Algorithms. Adv. Adapt. Data Anal. 2013, 5, 3. [Google Scholar] [CrossRef]
- Lipovetsky, S.; Tishler, A.; Conklin, M. Multivariate least squares and its relation to other multivariate techniques. Appl. Stoch. Model. Bus. Ind. 2002, 18, 347–356. [Google Scholar] [CrossRef]
Characteristics | x1 | x2 | y1 | y2 | y3 |
---|---|---|---|---|---|
mean | 35.09 | 2.29 | 9.67 | 1106.76 | 3.76 |
std | 9.15 | 1.29 | 4.48 | 990.87 | 2.87 |
Variables | CCA by the Eigenproblem (9) | |||
---|---|---|---|---|
(a1, b1) | (a2, b2) | (a3, b3) | (a4, b4) | |
x1 | 0.1808 | −0.1366 | −0.1808 | 0.1366 |
x2 | −0.9655 | −0.9815 | 0.9655 | 0.9815 |
y1 | −0.1681 | 0.1259 | −0.1681 | 0.1259 |
y2 | −0.0026 | −0.0003 | −0.0026 | −0.0003 |
y3 | −0.0828 | −0.0463 | −0.0828 | −0.0463 |
Canonical correlation coefficient, | 0.8248 | 0.3653 | −0.8248 | −0.3653 |
Added concordance correlation coefficient, | 0.1358 | 0.0034 | −0.8014 | −0.0051 |
Variables | CCCA by the Eigenproblem (15) | |||
---|---|---|---|---|
(a1, b1) | (a2, b2) | (a3, b3) | (a4, b4) | |
x1 | 0.0084 | −0.0505 | −0.2131 | −0.0969 |
x2 | −0.9980 | −0.3061 | 0.9546 | −0.8014 |
y1 | −0.0419 | 0.3663 | −0.1891 | −0.5870 |
y2 | −0.0013 | −0.0007 | −0.0028 | 0.0013 |
y3 | −0.0456 | −0.8773 | −0.0875 | −0.0616 |
Added correlation coefficient, | 0.8082 | 0.1767 | −0.8247 | −0.3237 |
Canonical concordance correlation coefficient, | 0.8080 | 0.0167 | −0.8247 | −0.0944 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipovetsky, S. Canonical Concordance Correlation Analysis. Mathematics 2023, 11, 99. https://doi.org/10.3390/math11010099
Lipovetsky S. Canonical Concordance Correlation Analysis. Mathematics. 2023; 11(1):99. https://doi.org/10.3390/math11010099
Chicago/Turabian StyleLipovetsky, Stan. 2023. "Canonical Concordance Correlation Analysis" Mathematics 11, no. 1: 99. https://doi.org/10.3390/math11010099
APA StyleLipovetsky, S. (2023). Canonical Concordance Correlation Analysis. Mathematics, 11(1), 99. https://doi.org/10.3390/math11010099