Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV
Abstract
:1. Introduction
- The support of is a non-intersecting smooth curve on the complex plane with end points at ∞.
- Weight matrix entries were, in principle, Hölder continuous, and eventually requested to have holomorphic extensions to the complex plane.
- The matrix of weights is regular, i.e., , , where the moment of order n, , associated with W is, for each , given by, .
2. Preliminaries
2.1. Matrix Biorthogonal Polynomials
- The support of is a non self-intersecting smooth curve on the complex plane with a beginning point at 0 and an ending point at ∞, and such that it intersects the circles , , once and only once (i.e., it can be taken as a determination curve for ).
- The entries of the matrix measure W can be written as
- The matrix of weights is regular, i.e., , , where the moment of order n, , associated with W is, for each , given by, .
2.2. Three-Term Recurrence Relation
2.3. Reductions: From Biorthogonality to Orthogonality
3. Riemann–Hilbert Problem for Matrix Biorthogonal Polynomials
3.1. The Riemann–Hilbert Problem
- (i)
- The matrix function
- (RHL1)
- is holomorphic in .
- (RHL2)
- Has the following asymptotic behavior near infinity,
- (RHL3)
- Satisfies the jump condition
- (RHL4)
- , as , , and the O conditions are understood entrywise.
- (ii)
- The matrix function
- (RHR1)
- is holomorphic in .
- (RHR2)
- Has the following asymptotic behavior near infinity,
- (RHR3)
- Satisfies the jump condition
- (RHR4)
- , as , , and the O conditions are understood entrywise.
- (iii)
- The determinant of and are both equal to 1, for every .
3.2. Pearson–Laguerre Matrix Weights with a Finite End Point
- (i)
- If has no eigenvalues that differ from each other by positive integers then, the solution of the left matrix differential equation in (10) can be written as
- (ii)
- If the matrix function has eigenvalues that differ from each other by positive integers, then the solution of the left matrix differential equation in (10) can be written as
3.3. Constant Jump Fundamental Matrix
- (i)
- They are holomorphic on .
- (ii)
- Present the following constant jump condition on γ
3.4. Structure Matrix and Zero Curvature Formula
- (i)
- The transfer matrices satisfy
- (ii)
- The zero curvature formulas, are fulfilled.
3.5. Differential Relations from the Riemann–Hilbert Problem
4. A Class of Laguerre Matrix Weights
- (1)
- If and , then
- (2)
- If
- If , then .
- If , then .
- is holomorphic in .
- over .
- when , then the are admissible eigenvalues for α,
- when, then only positive and bigger than 1 eigenvalues are admissible for α, and we have.
5. Matrix Discrete Painlevé IV
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Acronyms
MOP | matrix orthogonal polynomials |
MOPRL | matrix orthogonal polynomials in the real line |
OPRL | orthogonal polynomials in the real line |
dPIV | discrete Painlevé IV |
References
- Krein, M.G. Infinite J-matrices and a matrix moment problem. Dokl. Akad. Nauk SSSR 1949, 69, 125–128. [Google Scholar]
- Krein, M.G. Fundamental Aspects of the Representation Theory of Hermitian Operators with Deficiency Index (m, m); Series 2; AMS Translations: Providence, RI, USA, 1971; Volume 97, pp. 75–143. [Google Scholar]
- Berezanskii, J.M. Expansions in Eigenfunctions of Selfadjoint Operators. Translations of Mathematical Monographs. 1968. Available online: https://bookstore.ams.org/mmono-17 (accessed on 24 February 2022).
- Geronimo, J.S. Scattering theory and matrix orthogonal polynomials on the real line. Circuits Syst. Signal Process. 1982, 1, 471–495. [Google Scholar] [CrossRef]
- Aptekarev, A.I.; Nikishin, E.M. The scattering problem for a discrete Sturm-Liouville operator. Math. USSR Sb 1984, 49, 325–355. [Google Scholar] [CrossRef]
- Durán, A.J.; Grünbaum, F.A. Orthogonal matrix polynomials, scalar-type Rodrigues’ formulas and Pearson equations. J. Approx. Theory 2005, 134, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Durán, A.J.; Grünbaum, F.A. Structural formulas for orthogonal matrix polynomials satisfying second order differential equations, I. Constr. Approx. 2005, 22, 255–271. [Google Scholar] [CrossRef]
- Borrego, J.; Castro, M.; Durán, A.J. Orthogonal matrix polynomials satisfying differential equations with recurrence coefficients having non-scalar limits. Integral Transform. Spec. Funct. 2012, 23, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Durán, A.J. Matrix inner product having a matrix symmetric second order differential operator. Rocky Mountain J. Math. 1997, 27, 585–600. [Google Scholar] [CrossRef]
- Durán, A.J.; Grünbaum, F.A. Orthogonal matrix polynomials satisfying second order differential equations. Int. Math. Res. Not. 2004, 10, 461–484. [Google Scholar] [CrossRef]
- Durán, A.J.; de la Iglesia, M.D. Second order differential operators having several families of orthogonal matrix polynomials as eigenfunctions. Int. Math. Res. Not. 2008, 2008, rnn084. [Google Scholar] [CrossRef]
- Álvarez-Fernández, C.; Fidalgo, U.; Mañas, M. The multicomponent 2D Toda hierarchy: Generalized matrix orthogonal polynomials, multiple orthogonal polynomials and Riemann–Hilbert problems. Inverse Probl. 2010, 26, 055009. [Google Scholar] [CrossRef]
- Álvarez-Fernández, C.; Mañas, M. On the Christoffel–Darboux formula for generalized matrix orthogonal polynomials of multigraded Hankel type. J. Math. Anal. Appl. 2014, 418, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Adler, M.; van Moerbeke, P. Generalized orthogonal polynomials, discrete KP and Riemann–Hilbert problems. Commun. Math. Phys. 1999, 207, 589–620. [Google Scholar] [CrossRef] [Green Version]
- Adler, M.; van Moerbeke, P. Darboux transforms on band matrices, weights and associated polynomials. Int. Math. Res. Not. 2001, 18, 935–984. [Google Scholar] [CrossRef]
- Álvarez-Fernández, C.; Ariznabarreta, G.; García-Ardila, J.C.; Mañas, M.; Marcellán, F. Christoffel transformations for matrix orthogonal polynomials in the real line and the non-Abelian 2D Toda lattice hierarchy. Int. Math. Res. Not. 2017, 5, 1285–1341. [Google Scholar] [CrossRef] [Green Version]
- Ariznabarreta, G.; García-Ardila, J.C.; Mañas, M.; Marcellán, F. Non-Abelian integrable hierarchies: Matrix biorthogonal polynomials and perturbations. J. Phys. A Math. Theor. 2018, 51, 205204. [Google Scholar] [CrossRef]
- Ariznabarreta, G.; García-Ardila, J.C.; Mañas, M.; Marcellán, F. Matrix biorthogonal polynomials on the real line: Geronimus transformation. Bull. Math.Sci. 2019, 9, 1–66. [Google Scholar] [CrossRef]
- Fokas, A.S.; Its, A.R.; Kitaev, A.V. The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys. 1992, 147, 395–430. [Google Scholar] [CrossRef]
- Deift, P.A. Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach; Courant Lecture Notes; American Mathematical Society: Providence, RI, USA, 2000; Volume 3. [Google Scholar]
- Deift, P.A. Riemann–Hilbert methods in the theory of orthogonal polynomials, in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday. In Proceedings of Symposia in Pure Mathematics; American Mathematical Society: Providence, RI, USA, 2007; Volume 76, pp. 715–740. [Google Scholar]
- Deift, P.A.; Zhou, X. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 1993, 137, 295–368. [Google Scholar] [CrossRef] [Green Version]
- Deift, P.A.; Zhou, X. Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Commun. Pure Appl. Math. 2003, 56, 1029–1077. [Google Scholar] [CrossRef] [Green Version]
- Deift, P.A.; Gioev, D. Random Matrix Theory: Invariant Ensembles and Universality; Courant Lecture Notes in Mathematics; American Mathematical Society: Providence, RI, USA, 2009; Volume 18. [Google Scholar]
- Daems, E.; Kuijlaars, A.B.J. Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions. J. Approx. Theory 2007, 146, 91–114. [Google Scholar] [CrossRef] [Green Version]
- Daems, E.; Kuijlaars, A.B.J.; Veys, W. Asymptotics of non-intersecting Brownian motions and a 4 × 4 Riemann–Hilbert problem. J. Approx. Theory 2008, 153, 225–256. [Google Scholar] [CrossRef]
- Kuijlaars, A.B.J.; Martínez-Finkelshtein, A.; Wielonsky, F. Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights. Commun. Math. Phys. 2009, 286, 217–275. [Google Scholar] [CrossRef] [Green Version]
- Kuijlaars, A.B.J. Multiple orthogonal polynomial ensembles. arXiv 2010, arXiv:0902.1058. [Google Scholar]
- McLaughlin, K.T.-R.; Vartanian, A.H.; Zhou, X. Asymptotics of Laurent polynomials of even degree orthogonal with respect to varying exponential weights. Int. Math. Res. Pap. 2006, 2006, 62815. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, K.T.-R.; Vartanian, A.H.; Zhou, X. Asymptotics of Laurent polynomials of odd degree orthogonal with respect to varying exponential weights. Constr. Approx. 2008, 27, 149–202. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.; Kuijlaars, A.B.J. Painlevé IV asymptotics for orthogonal polynomials with respect to a modified Laguerre weight. Stud. Appl. Math. 2009, 122, 29–83. [Google Scholar] [CrossRef] [Green Version]
- Its, A.R.; Kuijlaars, A.B.J.; Östensson, J. Asymptotics for a special solution of the thirty fourth Painlevé equation. Nonlinearity 2009, 22, 1523–1558. [Google Scholar] [CrossRef]
- Van Assche, W. Discrete Painlevé equations for recurrence coefficients of orthogonal polynomials. In Proceedings of the International Conference on Difference Equations, Special Functions and Orthogonal Polynomials; World Scientific: Singapore, 2007; pp. 687–725. [Google Scholar]
- Van Assche, W. Orthogonal Polynomials and Painlevé Equations; Australian Mathematical Society Lecture Series; Cambridge University Press: Cambridge, UK, 2017; Volume 27. [Google Scholar]
- Freud, G. On the coefficients in the recursion formulae of orthogonal polynomials. Proc. R. Ir. Acad. Sect. A 1976, 76, 1–6. [Google Scholar]
- Magnus, A.P. Freud’s equations for orthogonal polynomials as discrete Painlevé equations. In Symmetries and Integrability of Difference Equations; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1999; Volume 255, pp. 228–243. [Google Scholar]
- Periwal, V.; Shevitz, D. Unitary-Matrix Models as Exactly Solvable String Theories. Phys. Rev. Lett. 1990, 64, 1326–1329. [Google Scholar] [CrossRef] [PubMed]
- Periwal, V.; Shevitz, D. Exactly solvable unitary matrix models: Multicritical potentials and correlations. Nucl. Phys. 1990, B344, 731–746. [Google Scholar] [CrossRef]
- Hisakado, M. Unitary matrix models and Painlevé III. Mod. Phys. Lett. 1996, A11, 3001–3010. [Google Scholar] [CrossRef] [Green Version]
- Baik, J. Riemann–Hilbert problems for last passage percolation in Recent Developments in Integrable Systems and Riemann–Hilbert Problems. Contemp. Math. 2003, 326, 1–21. [Google Scholar]
- Baik, J.; Deift, P.; Johansson, K. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 1999, 12, 1119–1178. [Google Scholar] [CrossRef]
- Tracy, C.A.; Widom, H. Random unitary matrices, permutations and Painlevé. Commun. Math. Phys. 1999, 207, 665–685. [Google Scholar] [CrossRef] [Green Version]
- Creswell, C.; Joshi, N. The discrete first, second and thirty-fourth Painlevé hierarchies. J. Phys. A Math. Gen. 1999, 32, 655–669. [Google Scholar] [CrossRef]
- Clarkson, P.A. Painlevé equations–Nonlinear Special Functions. In Orthogonal Polynomials and Special Functions; Marcellán, F., Van Assche, W., Eds.; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2011; Volume 1883, pp. 331–400. [Google Scholar]
- Clarkson, P.A.; Jordaan, K. The Relationship Between Semiclassical Laguerre Polynomials and the Fourth Painlevé Equation. Constr. Approx. 2014, 29, 223–254. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, P.A.; Loureiro, A.F.; Van Assche, W. Unique positive solution for an alternative discrete Painlevé I equation. J. Differ. Equ. Appl. 2016, 22, 656–675. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X. The Riemann–Hilbert problem and inverse scattering. SIAM J. Math. Anal. 1989, 20, 966–986. [Google Scholar] [CrossRef]
- Cassatella-Contra, G.A.; Mañas, M. Riemann–Hilbert Problems, Matrix Orthogonal Polynomials and Discrete Matrix Equations with Singularity Confinement. Stud. Appl. Math. 2011, 128, 252–274. [Google Scholar] [CrossRef]
- Cassatella-Contra, G.A.; Mañas, M.; Tempesta, P. Singularity confinement for matrix discrete Painlevé equations. Nonlinearity 2014, 27, 2321–2335. [Google Scholar] [CrossRef] [Green Version]
- Grünbaum, F.A.; de la Iglesia, M.D.; Martínez-Finkelshtein, A. Properties of matrix orthogonal polynomials via their Riemann–Hilbert characterization. SIGMA 2011, 7, 098. [Google Scholar] [CrossRef]
- Cassatella-Contra, G.A.; Mañas, M. Riemann–Hilbert problem and matrix discrete Painlevé II system. Stud. Appl. Math. 2019, 143, 272–314. [Google Scholar] [CrossRef]
- Branquinho, A.; Foulquié Moreno, A.; Mañas, M. Matrix biorthogonal polynomials: Eigenvalue problems and non-abelian discrete Painlevé equations: A Riemann–Hilbert problem perspective. J. Math. Anal. Appl. 2021, 494, 124605. [Google Scholar] [CrossRef]
- Gel’fand, I.M.; Gel’fand, S.; Retakh, V.S.; Wilson, R. Quasideterminants. Adv. Math. 2005, 193, 56–141. [Google Scholar] [CrossRef] [Green Version]
- Branquinho, A.; Foulquié Moreno, A.; Mañas, M. Riemann–Hilbert problem and Matrix Biorthogonal Polynomials. In Orthogonal Polynomials: Current Trends and Applications: Proceedings of the 7th EIBPOA Conference; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 1–15. [Google Scholar]
- Kuijlaars, A.B.J. Riemann–Hilbert analysis for orthogonal polynomials, In Orthogonal Polynomials and Special Functions; Springer: Berlin/Heidelberg, Germany, 2003; pp. 167–210. [Google Scholar]
- Gakhov, F.D. Boundary Value Problems; Dover Publications, Inc.: New York, NY, USA, 1990. [Google Scholar]
- Wasow, W. Asymptotic Expansions for oRdinary Differential Equations; Pure and Applied Mathematics; Interscience Publishers: New York, NY, USA, 1965; Volume XIV. [Google Scholar]
- Muskhelishvili, N.I. Singular Integral Equations; Dover Publications, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Cantero, M.J.; José, M.; Moral, L.; Velázquez, L. Matrix orthogonal polynomials whose derivatives are also orthogonal. J. Approx. Theory 2007, 146, 174–211. [Google Scholar] [CrossRef] [Green Version]
- Boelen, L.; Van Assche, W. Discrete Painlevé equations for recurrence coefficients of semiclassical Laguerre polynomials. Proc. Am. Math. Soc. 2010, 138, 1317–1331. [Google Scholar] [CrossRef] [Green Version]
- Grammaticos, B.; Hietarinta, J.; Ramani, A. Discrete versions of the Painlevé equations. Phys. Rev. Lett. 1991, 67, 1829–1832. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branquinho, A.; Moreno, A.F.; Fradi, A.; Mañas, M. Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV. Mathematics 2022, 10, 1205. https://doi.org/10.3390/math10081205
Branquinho A, Moreno AF, Fradi A, Mañas M. Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV. Mathematics. 2022; 10(8):1205. https://doi.org/10.3390/math10081205
Chicago/Turabian StyleBranquinho, Amílcar, Ana Foulquié Moreno, Assil Fradi, and Manuel Mañas. 2022. "Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV" Mathematics 10, no. 8: 1205. https://doi.org/10.3390/math10081205
APA StyleBranquinho, A., Moreno, A. F., Fradi, A., & Mañas, M. (2022). Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV. Mathematics, 10(8), 1205. https://doi.org/10.3390/math10081205