Mathematical Modeling of Dielectric Permeability and Volt-Ampere Characteristics of a Semiconductor Nanocomposite Conglomerate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yerznkyan, B.; Timur, M.G.; Gataullin, S.T. Solow Models with Linear Labor Function for Industry and Enterprise. Montenegrin J. Econ. 2021, 17, 111–120. [Google Scholar] [CrossRef]
- Sudakov, V. Improving Air Transportation by Using the Fuzzy Origin–Destination Matrix. Mathematics 2021, 9, 1236. [Google Scholar] [CrossRef]
- Kudrik, Y.Y. Nanostructured antidiffusion layers in contacts to wide-band semiconductors. Technol. Des. Electron. Equip. 2013, 6, 3–13. [Google Scholar]
- Osipov, A.; Filimonov, A.; Suvorov, S. Applying Machine Learning Techniques to Identify Damaged Potatoes. In Proceedings of the LNCS 20th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2021, Virtual, Online, 21–23 June 2021. [Google Scholar] [CrossRef]
- Bagrat, Y.; Bychkova, S.; Gataullin, T.; Gataullin, S. The sufficiency principle as the ideas quintessence of the club of Rome. Montenegrin J. Econ. 2019, 15, 21–29. [Google Scholar]
- Ivanyuk, V. Formulating the concept of an investment strategy adaptable to changes in the market situation. Economies 2021, 9, 95. [Google Scholar] [CrossRef]
- Barrera, G.; Tiberto, P.; Allia, P.; Bonelli, B.; Esposito, S.; Marocco, A.; Pansini, M.; Leterrier, Y. Magnetic Properties of Nanocomposites. Appl. Sci. 2019, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Korchagin, S.A.; Klinaev, Y.V.; Serdechnyy, D.V.; Terin, D.V. Software and Digital Methods in the Natural Experiment for the Research of Dielectric Permeability of Nanocomposites. In Proceedings of the 2018 International Conference on Actual Problems of Electron Devices Engineering (APEDE), Saratov, Russia, 27–28 September 2018; pp. 262–265. [Google Scholar] [CrossRef]
- Korchagin, S.; Romanova, E.; Serdechnyy, D.; Nikitin, P.; Dolgov, V.; Feklin, V. Mathematical Modeling of Layered Nanocomposite of Fractal Structure. Mathematics 2021, 9, 1541. [Google Scholar] [CrossRef]
- Chen, L.; Cao, X.; Gao, J.; He, W.; Liu, J.; Wang, Y.; Zhou, X.; Shen, J.; Wang, B.; He, Y.; et al. Nitrated bacterial cellulose-based energetic nanocomposites as propellants and explosives for military applications. ACS Appl. Nano Mater. 2021, 4, 1906–1915. [Google Scholar] [CrossRef]
- Aepuru, R.; Mangalaraja, R.V. Nanocomposites Based Self-Powered Electronic Systems: Investigating the Materials Properties for Energy Harvesters and Photodetectors. ECS Meet. Abstr. IOP Publ. 2019, 26, 1289. [Google Scholar] [CrossRef]
- Vaezi, K.; Asadpour, G.; Sharifi, H. Effect of ZnO nanoparticles on the mechanical, barrier and optical properties of thermoplastic cationic starch/montmorillonite biodegradable films. Int. J. Biol. Macromol. 2019, 124, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Galushka, V.V.; Zharkova, E.A.; Terin, D.V.; Sidorov, V.I.; Khasina, E.I. Mechanisms of Frequency-Dependent Conductivity of Mesoporous Silicon at γ Irradiation with Small Doses. Tech. Phys. Lett. 2019, 45, 533–536. [Google Scholar] [CrossRef]
- Cazon, P.; Vázquez, M.; Velazquez, G. Environmentally friendly films combining bacterial cellulose, chitosan, and polyvinyl alcohol: Effect of water activity on barrier, mechanical, and optical properties. Biomacromolecules 2019, 21, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Terin, D.V.; Kardash, M.M.; Druzhinina, T.V.; Tsyplyaev, S.V. Effect of Structural Heterogeneity of Polikon Mosaic Materials on Their Properties. Membr. Membr. Technol. 2019, 1, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Korchagin, S.A.; Klinaev, Y.V.; Terin, D.V.; Romanchuk, S.P. Modeling of electrodynamic properties of composite media. Bull. Saratov State Tech. Univ. 2015, 3, 48–54. [Google Scholar]
- Romanchuk, S.P.; Terin, D.V. Mathematical Modeling and Multicriteria Analysis of Nonlinear Properties of Composite Materials Based on an Effective Medium. Certificate of State Registration of Computer Programs No. 2014612918/69. Available online: https://www.fips.ru/iiss/document.xhtml?faces-redirect=true&id=62fb4a644e04dac53dc4964538462d92 (accessed on 8 January 2022).
- Panshin, A.M.; Kozlov, P.A.; Terentyev, V.M. Kinetics of oxidation of zinc sulfide concentrates. Non-Ferrous Met. 2014, 2, 34–37. [Google Scholar]
- Einzinger, R. Grain junctions properties of ZnJ-varistors. Appl. Surf. Sci. 1979, 3, 390–408. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korchagin, S.; Romanova, E.; Nikitin, P.; Serdechnyy, D.; Bublikov, K.V.; Bystrenina, I. Mathematical Modeling of Dielectric Permeability and Volt-Ampere Characteristics of a Semiconductor Nanocomposite Conglomerate. Mathematics 2022, 10, 596. https://doi.org/10.3390/math10040596
Korchagin S, Romanova E, Nikitin P, Serdechnyy D, Bublikov KV, Bystrenina I. Mathematical Modeling of Dielectric Permeability and Volt-Ampere Characteristics of a Semiconductor Nanocomposite Conglomerate. Mathematics. 2022; 10(4):596. https://doi.org/10.3390/math10040596
Chicago/Turabian StyleKorchagin, Sergey, Ekaterina Romanova, Petr Nikitin, Denis Serdechnyy, Konstantin V. Bublikov, and Irina Bystrenina. 2022. "Mathematical Modeling of Dielectric Permeability and Volt-Ampere Characteristics of a Semiconductor Nanocomposite Conglomerate" Mathematics 10, no. 4: 596. https://doi.org/10.3390/math10040596
APA StyleKorchagin, S., Romanova, E., Nikitin, P., Serdechnyy, D., Bublikov, K. V., & Bystrenina, I. (2022). Mathematical Modeling of Dielectric Permeability and Volt-Ampere Characteristics of a Semiconductor Nanocomposite Conglomerate. Mathematics, 10(4), 596. https://doi.org/10.3390/math10040596