The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient
Abstract
:1. Introduction
2. Preliminary Knowledge
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Rassias, T.M.; Semrl, P. On the Hyers–Ulam stability of linear mappings. J. Math. Anal. Appl. 1993, 173, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Rassias, T.M. On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 2000, 251, 264–284. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Popa, D.; Rassias, M.T. On the stability of the linear functional equation in a single variable on complete metric groups. J. Glob. Optim. 2014, 59, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Prastaro, A.; Rassias, T.M. On Ulam stability in geometry of PDEs. Nonlinear Funct. Anal. Appl. 2003, 8, 259–278. [Google Scholar]
- Wang, F.; Xue, L.; Zhao, K.; Zheng, X.M. Global stabilization and boundary control of generalized Fisher/KPP equation and application to diffusive SIS model. J. Differ. Equ. 2021, 275, 391–417. [Google Scholar] [CrossRef]
- Takeshi, M.; Jung, S.; Takahasi, S. Hyers–Ulam–Rassias staility of the banach space valued linear differential equations y′=λy. J. Korean Med. Sci. 2004, 41, 995–1005. [Google Scholar]
- Lungu, N.; Popa, D. Hyers–Ulam stability of a first order partial differential equation. J. Math. Anal. Appl. 2012, 385, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Hamza, A.E.; Alghamdi, M.A.; Alharbi, M.S. On Hyers–Ulam and Hyers–Ulam–Rassias Stability of a Nonlinear Second-Order Dynamic Equation on Time Scales. Mathematics 2021, 9, 1507. [Google Scholar] [CrossRef]
- Marian, D.; Ciplea, S.A.; Lungu, N. On Ulam–CHyers Stability for a System of Partial Differential Equations of First Order. Symmetry 2020, 12, 1060. [Google Scholar] [CrossRef]
- Otrocol, D.; Ilea, V. Ulam stability for a delay differential equation. Cent. Eur. J. Math. 2013, 11, 1296–1303. [Google Scholar] [CrossRef]
- Zada, A.; Shaleena, S.; Li, T.X. Stability analysis of higher order nonlinear differential equations in β-normed spaces. Math. Methods Appl. Sci. 2019, 42, 1151–1166. [Google Scholar] [CrossRef]
- Popa, D.; Rasa, I. Hyers–Ulam stability of the linear differential operator with nonconstant coefficients. Appl. Math. Comput. 2012, 219, 1562–1568. [Google Scholar] [CrossRef]
- Miura, T.; Miyajima, S.; Takahasi, S. A characterization of Hyers–Ulam stability of first order linear differential operators. J. Math. Anal. Appl. 2003, 286, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, H.; Jung, S.; Rassias, T.M. Laplace transform and Hyers–Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Wang, J.R. Hyers–Ulam stability and existence of solutions for Nigmatullin’s fractional diffusion equation. Adv. Math. Phys. 2017, 6, 9692685. [Google Scholar] [CrossRef] [Green Version]
- Jung, S. On the stability of wave equation. Abstr. Appl. Anal. 2013, 6, 910565. [Google Scholar] [CrossRef] [Green Version]
- Hegyi, B.; Jung, S. On the stability of heat equation. Abstr. Appl. Anal. 2013, 4, 202373. [Google Scholar] [CrossRef]
- Jung, S. On the stability of the heat equation with an initial condition. J. Inequalities Appl. 2013, 2013, 475. [Google Scholar] [CrossRef] [Green Version]
- Choi, G.; Jung, S.; Roh, J. An operator method for the stability of inhomogeneous wave equations. Symmetry 2019, 11, 324. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Min, S. Stability of the wave equation with a source. J. Funct. Spaces 2018, 4, 8274159. [Google Scholar] [CrossRef]
- Jung, S.; Min, S. Stability of the diffusion equation with a source. J. Fun. Spaces 2018, 8, 1216901. [Google Scholar] [CrossRef]
- Kang, D.; Hoewoon, B. Generalized Hyers–Ulam stability of diffusion equation in the n-dimensional euclidean space. Appl. Math. Lett. 2020, 103, 106169. [Google Scholar] [CrossRef]
- Kang, D.; Hoewoon, B. Fourier transforms and L2-stability of diffusion equations. J. Comput. Appl. Math. 2022, 409, 114181. [Google Scholar] [CrossRef]
- Yang, X.F.; Ni, Y.D. Existence and uniqueness theorem for uncertain heat equation. J. Ambient. Intell. Humaniz. Comput. 2017, 8, 717–725. [Google Scholar] [CrossRef]
- Yasuyuki, O.K.A. The uniqueness theorem for the heat equation on the Heisenberg group. Tokyo J. Math. 2016, 39, 361371. [Google Scholar]
- Strauss, W.A. Partial Differential Equations; Wiley: Hoboken, NJ, USA, 2009; pp. 1–71. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Gao, Y. The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient. Mathematics 2022, 10, 4355. https://doi.org/10.3390/math10224355
Wang F, Gao Y. The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient. Mathematics. 2022; 10(22):4355. https://doi.org/10.3390/math10224355
Chicago/Turabian StyleWang, Fang, and Ying Gao. 2022. "The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient" Mathematics 10, no. 22: 4355. https://doi.org/10.3390/math10224355
APA StyleWang, F., & Gao, Y. (2022). The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient. Mathematics, 10(22), 4355. https://doi.org/10.3390/math10224355