Adaptive Neural Backstepping Control Approach for Tracker Design of Wheelchair Upper-Limb Exoskeleton Robot System
Abstract
:1. Introduction
- (i).
- Presentation of the dynamical model of the upper-limb exoskeleton robot system using a common model of the robot system;
- (ii).
- Using backstepping control strategy based on a virtual control input for the demonstration of the convergence of the position tracking error;
- (iii).
- Proposition of the adaptive neural network for the rejection of the model uncertainty and external disturbance;
- (iv).
- Adoption of the adaptation law for the estimation of the unknown constant parameter existed in the neural network process.
2. Model Description of Wheelchair Upper-Limb Exoskeleton System
3. Preliminaries
4. Main Results
- Step 1: Taking the time-derivative of Equation (8) for results in
- Step 2: Taking the time-derivative of Equation (8) for results in
5. Main Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikeda, H.; Toyama, T.; Maki, D.; Sato, K.; Nakano, E. Cooperative step-climbing strategy using an autonomous wheelchair and a robot. Robot. Auton. Syst. 2021, 135, 103670. [Google Scholar] [CrossRef]
- Kirby, R.L.; Bennett, S.; Smith, C.; Parker, K.; Thompson, K. Wheelchair curb climbing: Randomized controlled comparison of highly structured and conventional training methods. Arch. Phys. Med. Rehabil. 2008, 89, 2342–2348. [Google Scholar] [CrossRef] [PubMed]
- Calder, C.J.; Kirby, R.L. Fatal wheelchair-related accidents in the United States. Am. J. Phys. Med. Rehabil. 1990, 69, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Peng, Y. Development and Validation of a Robotic System Combining Mobile Wheelchair and Lower Extremity Exoskeleton. J. Intell. Robot. Syst. 2022, 104, 5. [Google Scholar] [CrossRef]
- Aly, A.A.; Vu, M.T.; El-Sousy, F.F.; Hsia, K.-H.; Alotaibi, A.; Mousa, G.; Le, D.-N.; Mobayen, S. Adaptive Neural Network-Based Fixed-Time Tracking Controller for Disabilities Exoskeleton Wheelchair Robotic System. Mathematics 2022, 10, 3853. [Google Scholar] [CrossRef]
- Escobedo, A.; Spalanzani, A.; Laugier, C. Multimodal control of a robotic wheelchair: Using contextual information for usability improvement. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4262–4267. [Google Scholar]
- Aly, A.A.; El-Sousy, F.F.; Alotaibi, A.; Mousa, G.; Le, D.-N.; Mobayen, S. Fuzzy-Based Fixed-Time Nonsingular Tracker of Exoskeleton Robots for Disabilities Using Sliding Mode State Observer. Mathematics 2022, 10, 3147. [Google Scholar] [CrossRef]
- Jafari, M.; Mobayen, S.; Bayat, F.; Roth, H. A nonsingular terminal sliding algorithm for swing and stance control of a prosthetic leg robot. Appl. Math. Model. 2023, 113, 13–29. [Google Scholar] [CrossRef]
- Huang, G.; Ceccarelli, M.; Huang, Q.; Zhang, W.; Yu, Z.; Chen, X.; Mai, J. Design and feasibility study of a leg-exoskeleton assistive wheelchair robot with tests on gluteus medius muscles. Sensors 2019, 19, 548. [Google Scholar] [CrossRef] [Green Version]
- Thøgersen, M.B.; Mohammadi, M.; Gull, M.A.; Bengtson, S.H.; Kobbelgaard, F.V.; Bentsen, B.; Khan, B.Y.A.; Severinsen, K.E.; Bai, S.; Bak, T. User Based Development and Test of the EXOTIC Exoskeleton: Empowering Individuals with Tetraplegia Using a Compact, Versatile, 5-DoF Upper Limb Exoskeleton Controlled through Intelligent Semi-Automated Shared Tongue Control. Sensors 2022, 22, 6919. [Google Scholar] [CrossRef]
- Abdelbar, M.; Mohamed, I.; Abdellatif, A.; Hegaze, M.M. Towards the Mechatronic Development of a New Upper-Limb Exoskeleton (SAMA). Designs 2022, 6, 80. [Google Scholar] [CrossRef]
- Razzaghian, A. A fuzzy neural network-based fractional-order Lyapunov-based robust control strategy for exoskeleton robots: Application in upper-limb rehabilitation. Math. Comput. Simul. 2022, 193, 567–583. [Google Scholar] [CrossRef]
- Gopura, R.; Bandara, D.; Kiguchi, K.; Mann, G.K. Developments in hardware systems of active upper-limb exoskeleton robots: A review. Robot. Auton. Syst. 2016, 75, 203–220. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, J.; Kong, D.; Su, S.; Yuan, X.; Zhao, C. Research on control method of upper limb exoskeleton based on mixed perception model. Robotica 2022, 40, 3669–3685. [Google Scholar] [CrossRef]
- Kapsalyamov, A.; Hussain, S.; Jamwal, P.K. State-of-the-art assistive powered upper limb exoskeletons for elderly. IEEE Access 2020, 8, 178991–179001. [Google Scholar] [CrossRef]
- Teng, L.; Gull, M.A.; Bai, S. PD-based fuzzy sliding mode control of a wheelchair exoskeleton robot. IEEE/ASME Trans. Mechatron. 2020, 25, 2546–2555. [Google Scholar] [CrossRef]
- Gandolla, M.; Dalla Gasperina, S.; Longatelli, V.; Manti, A.; Aquilante, L.; D’Angelo, M.G.; Biffi, E.; Diella, E.; Molteni, F.; Rossini, M. An assistive upper-limb exoskeleton controlled by multi-modal interfaces for severely impaired patients: Development and experimental assessment. Robot. Auton. Syst. 2021, 143, 103822. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Chen, B.; Wu, H. Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton. Mechatronics 2018, 53, 85–94. [Google Scholar] [CrossRef]
- He, W.; Li, Z.; Dong, Y.; Zhao, T. Design and adaptive control for an upper limb robotic exoskeleton in presence of input saturation. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 97–108. [Google Scholar] [CrossRef]
- Kang, H.-B.; Wang, J.-H. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety. ISA Trans. 2013, 52, 844–852. [Google Scholar] [CrossRef]
- Babaiasl, M.; Goldar, S.N.; Barhaghtalab, M.H.; Meigoli, V. Sliding mode control of an exoskeleton robot for use in upper-limb rehabilitation. In Proceedings of the 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, 7–9 October 2015; pp. 694–701. [Google Scholar]
- Zheng, K.; Zhang, Q.; Hu, Y.; Wu, B. Design of fuzzy system-fuzzy neural network-backstepping control for complex robot system. Inf. Sci. 2021, 546, 1230–1255. [Google Scholar] [CrossRef]
- Deng, W.; Yao, J.; Wang, Y.; Yang, X.; Chen, J. Output feedback backstepping control of hydraulic actuators with valve dynamics compensation. Mech. Syst. Signal Process. 2021, 158, 107769. [Google Scholar] [CrossRef]
- Khamar, M.; Edrisi, M. Designing a backstepping sliding mode controller for an assistant human knee exoskeleton based on nonlinear disturbance observer. Mechatronics 2018, 54, 121–132. [Google Scholar] [CrossRef]
- Yang, P.; Ma, X.; Wang, J.; Zhang, G.; Zhang, Y.; Chen, L. Disturbance observer-based terminal sliding mode control of a 5-DOF upper-limb exoskeleton robot. IEEE Access 2019, 7, 62833–62839. [Google Scholar] [CrossRef]
- Ahmed, S.; Wang, H.; Tian, Y. Model-free control using time delay estimation and fractional-order nonsingular fast terminal sliding mode for uncertain lower-limb exoskeleton. J. Vib. Control 2018, 24, 5273–5290. [Google Scholar] [CrossRef]
- Ahmed, S.; Wang, H.; Tian, Y. Robust adaptive fractional-order terminal sliding mode control for lower-limb exoskeleton. Asian J. Control 2019, 21, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Xia, K.; Huo, W. Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties. Nonlinear Dyn. 2016, 84, 1683–1695. [Google Scholar] [CrossRef]
- Sun, L.; He, W.; Sun, C. Adaptive fuzzy relative pose control of spacecraft during rendezvous and proximity maneuvers. IEEE Trans. Fuzzy Syst. 2018, 26, 3440–3451. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, B.; Wu, H. Rbfn-based adaptive backstepping sliding mode control of an upper-limb exoskeleton with dynamic uncertainties. IEEE Access 2019, 7, 134635–134646. [Google Scholar] [CrossRef]
- Chen, X.; Li, D.; Wang, P.; Yang, X.; Li, H. Model-free adaptive sliding mode robust control with neural network estimator for the multi-degree-of-freedom robotic exoskeleton. Complexity 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Slotine, J.-J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991; Volume 199. [Google Scholar]
- Chen, C.; Liu, Z.; Xie, K.; Zhang, Y.; Chen, C.P. Asymptotic adaptive control of nonlinear systems with elimination of overparametrization in a Nussbaum-like design. Automatica 2018, 98, 277–284. [Google Scholar] [CrossRef]
- Afshari, M.; Mobayen, S.; Hajmohammadi, R.; Baleanu, D. Global sliding mode control via linear matrix inequality approach for uncertain chaotic systems with input nonlinearities and multiple delays. J. Comput. Nonlinear Dyn. 2018, 13, 031008. [Google Scholar] [CrossRef]
Scenario 1 | |
Scenario 2 |
Scenario | |
Scenario |
Number | Initial Condition |
---|---|
1 | |
2 | |
3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aly, A.A.; Hsia, K.-H.; El-Sousy, F.F.M.; Mobayen, S.; Alotaibi, A.; Mousa, G.; Le, D.-N. Adaptive Neural Backstepping Control Approach for Tracker Design of Wheelchair Upper-Limb Exoskeleton Robot System. Mathematics 2022, 10, 4198. https://doi.org/10.3390/math10224198
Aly AA, Hsia K-H, El-Sousy FFM, Mobayen S, Alotaibi A, Mousa G, Le D-N. Adaptive Neural Backstepping Control Approach for Tracker Design of Wheelchair Upper-Limb Exoskeleton Robot System. Mathematics. 2022; 10(22):4198. https://doi.org/10.3390/math10224198
Chicago/Turabian StyleAly, Ayman A., Kuo-Hsien Hsia, Fayez F. M. El-Sousy, Saleh Mobayen, Ahmed Alotaibi, Ghassan Mousa, and Dac-Nhuong Le. 2022. "Adaptive Neural Backstepping Control Approach for Tracker Design of Wheelchair Upper-Limb Exoskeleton Robot System" Mathematics 10, no. 22: 4198. https://doi.org/10.3390/math10224198
APA StyleAly, A. A., Hsia, K.-H., El-Sousy, F. F. M., Mobayen, S., Alotaibi, A., Mousa, G., & Le, D.-N. (2022). Adaptive Neural Backstepping Control Approach for Tracker Design of Wheelchair Upper-Limb Exoskeleton Robot System. Mathematics, 10(22), 4198. https://doi.org/10.3390/math10224198