Feature Selection Based on Mud Ring Algorithm for Improving Survival Prediction of Children Undergoing Hematopoietic Stem-Cell Transplantation
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Exploration and Hunting for Prey Phase
3.2. Feeding and Exploitation Phase of the Mud Ring
Algorithm 1: MRA Algorithm |
1. Initialize the population of dolphins randomly, Di, i ∈ [1, 2, ..., n] and velocity vi 2. Evaluate the fitness function of each dolphin 3. Find the best dolphin position (features set) D* 4. while ( < ) 5. for i = 1 to n 6. Modify , , , and 7. if |K| >= 1 then Generate new solutions by modifying velocity vi using Equation (3) 8. Else /* Forming the mud ring*/ Update the current dolphin location using Equation (5) 9. end if 10. end for 11. Update the bounds for dolphins outside the search space 12. Attain the dolphin’s fitness functions 13. Update D* in case of a better position (features) 14. Set 15. end while Return D* (the best subset of features) |
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Attribute | Information |
---|---|
Donor_age | Age of the donor at the time of hematopoietic stem cells apheresis |
donor_age_below_35 | Is donor age less than 35 (yes, no) |
donor_ABO | ABO blood group of the donor of hematopoietic stem cells (0, A, B, AB) |
donor_CMV | Presence of cytomegalovirus infection in the donor of hematopoietic stem cells prior to transplantation (present, absent) |
recipient_age | Age of the recipient of hematopoietic stem cells at the time of transplantation |
recipient_age_below_10 | Is recipient age below 10 (yes, no) |
recipient_age_int | Age of the recipient discretized to intervals (0,5], (5, 10], (10, 20] |
recipient_gender | Gender of the recipient (female, male) |
recipient_body_mass | Body mass of the recipient of hematopoietic stem cells at the time of the transplantation |
recipient_ABO | ABO blood group of the recipient of hematopoietic stem cells (0, A, B, AB) |
recipient_rh | Presence of the Rh factor on recipient red blood cells (plus, minus) |
recipient_CMV | Presence of cytomegalovirus infection in the donor of hematopoietic stem cells prior to transplantation (present, absent) |
disease | Type of disease (ALL, AML, chronic, nonmalignant, lymphoma) |
disease_group | Type of disease (malignant, nonmalignant) |
gender_match | Compatibility of the donor and recipient according to their gender (female to male, other) |
ABO_match | Compatibility of the donor and the recipient of hematopoietic stem cells according to ABO blood group (matched, mismatched) |
CMV_status | Serological compatibility of the donor and the recipient of hematopoietic stem cells according to cytomegalovirus infection prior to transplantation (the higher the value, the lower the compatibility) |
HLA_match | Compatibility of antigens of the main histocompatibility complex of the donor and the recipient of hematopoietic stem cells (10/10, 9/10, 8/10, 7/10) |
HLA_mismatch | HLA matched or mismatched |
antigen | In how many antigens there is a difference between the donor and the recipient (0–3) |
allel | In how many allele there is a difference between the donor and the recipient (0–4) |
HLA_group_1 | The difference type between the donor and the recipient (HLA matched, one antigen, one allel, DRB1 cell, two allele or allel+antigen, two antigenes+allel, mismatched) |
risk_group | Risk group (high, low) |
stem_cell_source | Source of hematopoietic stem cells (peripheral blood, bone marrow) |
tx_post_relapse | The second bone marrow transplantation after relapse (yes ,no) |
CD34_x1e6_per_kg | CD34kgx10d6-CD34+ cell dose per kg of recipient body weight (106/kg) |
CD3_x1e8_per_kg | CD3+ cell dose per kg of recipient body weight (108/kg) |
CD3_to_CD34_ratio | CD3+ cell to CD34+ cell ratio |
ANC_recovery | Neutrophils recovery defined as neutrophils count > 0.5 × 109/L (yes, no) |
time_to_ANC_recovery | Time in days to neutrophils recovery |
PLT_recovery | Platelet recovery defined as platelet count > 50,000/mm3 (yes, no) |
time_to_PLT_recovery | Time in days to platelet recovery |
acute_GvHD_II_III_IV | Development of acute graft versus host disease stage II or III or IV (yes, no) |
acute_GvHD_III_IV | Development of acute graft versus host disease stage III or IV (yes, no) |
time_to_acute_GvHD_III_IV | Time in days to development of acute graft versus host disease stage III or IV |
extensive_chronic_GvHD | Development of extensive chronic graft versus host disease (yes, no) |
relapse | Relapse of the disease (yes, no) |
survival_time | Time of observation (if alive) or time to event (if dead) in days |
survival_status | Survival status (0—alive, 1—dead) |
References
- Ritari, J.; Hyvärinen, K.; Koskela, S.; Itälä-Remes, M.; Niittyvuopio, R.; Nihtinen, A.; Salmenniemi, U.; Putkonen, M.; Volin, L.; Kwan, T.; et al. Genomic Prediction of Relapse in Recipients of Allogeneic Haematopoietic Stem Cell Transplantation. Leukemia 2019, 33, 240–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.-J.; Davies, S.M.; Camitta, B.M.; Logan, B.; Tiedemann, K.; Eapen, M.; Thiel, E.L. Comparison of Outcomes after HLA-Matched Sibling and Unrelated Donor Transplantation for Children with High-Risk Acute Lymphoblastic Leukemia. Biol. Blood Marrow Transpl. 2012, 18, 1204–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fürst, D.; Müller, C.; Vucinic, V.; Bunjes, D.; Herr, W.; Gramatzki, M.; Schwerdtfeger, R.; Arnold, R.; Einsele, H.; Wulf, G.; et al. High-Resolution HLA Matching in Hematopoietic Stem Cell Transplantation: A Retrospective Collaborative Analysis. Blood 2013, 122, 3220–3229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satheeshkumar, P.S.; El-Dallal, M.; Mohan, M.P. Feature Selection and Predicting Chemotherapy-Induced Ulcerative Mucositis Using Machine Learning Methods. Int. J. Med. Inform. 2021, 154, 104563. [Google Scholar] [CrossRef] [PubMed]
- Lalla, R.V.; Sonis, S.T.; Peterson, D.E. Management of Oral Mucositis in Patients Who Have Cancer. Dent. Clin. N. Am. 2008, 52, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Berger, K.; Schopohl, D.; Bollig, A.; Strobach, D.; Rieger, C.; Rublee, D.; Ostermann, H. Burden of Oral Mucositis: A Systematic Review and Implications for Future Research. Oncol. Res. Treat. 2018, 41, 399–405. [Google Scholar] [CrossRef]
- Blijlevens, N.; Schwenkglenks, M.; Bacon, P.; D’Addio, A.; Einsele, H.; Maertens, J.; Niederwieser, D.; Rabitsch, W.; Roosaar, A.; Ruutu, T.; et al. Prospective Oral Mucositis Audit: Oral Mucositis in Patients Receiving High-Dose Melphalan or BEAM Conditioning Chemotherapy—European Blood and Marrow Transplantation Mucositis Advisory Group. J. Clin. Oncol. 2008, 26, 1519–1525. [Google Scholar] [CrossRef]
- Abualigah, L.M.Q. Krill Herd Algorithm. In Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering; Springer: Cham, Switzerland, 2018; pp. 11–19. [Google Scholar]
- Elaziz, M.A.; Abualigah, L.; Yousri, D.; Oliva, D.; Al-Qaness, M.A.A.; Nadimi-Shahraki, M.H.; Ewees, A.A.; Lu, S.; Ali Ibrahim, R. Boosting Atomic Orbit Search Using Dynamic-Based Learning for Feature Selection. Mathematics 2021, 9, 2786. [Google Scholar] [CrossRef]
- Mostafa, R.R.; Ewees, A.A.; Ghoniem, R.M.; Abualigah, L.; Hashim, F.A. Boosting Chameleon Swarm Algorithm with Consumption AEO Operator for Global Optimization and Feature Selection. Knowl.-Based Syst. 2022, 246, 108743. [Google Scholar] [CrossRef]
- Wu, D.; Jia, H.; Abualigah, L.; Xing, Z.; Zheng, R.; Wang, H.; Altalhi, M. Enhance Teaching-Learning-Based Optimization for Tsallis-Entropy-Based Feature Selection Classification Approach. Processes 2022, 10, 360. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A. Chaotic Binary Group Search Optimizer for Feature Selection. Expert Syst. Appl. 2022, 192, 116368. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Q.; Wei, Y.; Abualigah, L.; Zhou, Y. An Efficient Binary Gradient-Based Optimizer for Feature Selection. Math. Biosci. Eng. 2021, 18, 3813–3854. [Google Scholar] [CrossRef]
- Desuky, A.S.; Cifci, M.A.; Kausar, S.; Hussain, S.; El Bakrawy, L.M. Mud Ring Algorithm: A New Meta-Heuristic Optimization Algorithm for Solving Mathematical and Engineering Challenges. IEEE Access 2022, 10, 50448–50466. [Google Scholar] [CrossRef]
- Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.A.; Shambour, M.K.Y.; Alsalibi, A.I.; Gandomi, A.H. Machine Learning in Medical Applications: A Review of State-of-the-Art Methods. Comput. Biol. Med. 2022, 145, 105458. [Google Scholar] [CrossRef]
- Kim, B.; Lee, J.W.; Hong, K.T.; Yu, K.-S.; Jang, I.-J.; Park, K.D.; Shin, H.Y.; Ahn, H.S.; Cho, J.-Y.; Kang, H.J. Pharmacometabolomics for Predicting Variable Busulfan Exposure in Paediatric Haematopoietic Stem Cell Transplantation Patients. Sci. Rep. 2017, 7, 1711. [Google Scholar] [CrossRef] [Green Version]
- Baliarsingh, S.K.; Vipsita, S.; Dash, B. A New Optimal Gene Selection Approach for Cancer Classification Using Enhanced Jaya-Based Forest Optimization Algorithm. Neural Comput. Appl. 2019, 32, 8599–8616. [Google Scholar] [CrossRef]
- Houssein, E.H.; Saber, E.; Ali, A.A.; Wazery, Y.M. Centroid Mutation-Based Search and Rescue Optimization Algorithm for Feature Selection and Classification. Expert Syst. Appl. 2022, 191, 116235. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H. Chaotic Multi-Swarm Whale Optimizer Boosted Support Vector Machine for Medical Diagnosis. Appl. Soft Comput. 2020, 88, 105946. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Zamani, H.; Mirjalili, S. Enhanced Whale Optimization Algorithm for Medical Feature Selection: A COVID-19 Case Study. Comput. Biol. Med. 2022, 148, 105858. [Google Scholar] [CrossRef]
- Abu Khurmaa, R.; Aljarah, I.; Sharieh, A. An Intelligent Feature Selection Approach Based on Moth Flame Optimization for Medical Diagnosis. Neural Comput. Appl. 2020, 33, 7165–7204. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes Optimization Algorithm: A New Metaheuristic Algorithm for Solving Optimization Problems. Appl. Intell. 2020, 51, 1531–1551. [Google Scholar] [CrossRef]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- El-Kenawy, E.-S.M.; Zerouali, B.; Bailek, N.; Bouchouich, K.; Hassan, M.A.; Almorox, J.; Kuriqi, A.; Eid, M. Improved Weighted Ensemble Learning for Predicting the Daily Reference Evapotranspiration under the Semi-Arid Climate Conditions. Environ. Sci. Pollut. Res. 2022, 29, 81279–81299. [Google Scholar] [CrossRef] [PubMed]
- Desuky, A.S.; Hussain, S.; Kausar, S.; Islam, M.A.; El Bakrawy, L.M. EAOA: An Enhanced Archimedes Optimization Algorithm for Feature Selection in Classification. IEEE Access 2021, 9, 120795–120814. [Google Scholar] [CrossRef]
- Gong, M. A Novel Performance Measure for Machine Learning Classification. Int. J. Manag. Inf. Technol. 2021, 13, 11–19. [Google Scholar] [CrossRef]
- Asuncion, A.; Newman, D. UCI Machine Learning Repository; UCI: San Diego, CA, USA, 2007. [Google Scholar]
- Chou, J.-S.; Truong, D.-N. A Novel Metaheuristic Optimizer Inspired by Behavior of Jellyfish in Ocean. Appl. Math. Comput. 2021, 389, 125535. [Google Scholar] [CrossRef]
- El-kenawy, E.-S.M.; Ibrahim, A.; Bailek, N.; Bouchouicha, K.; Hassan, M.A.; Jamei, M.; Al-Ansari, N. Sunshine Duration Measurements and Predictions in Saharan Algeria Region: An Improved Ensemble Learning Approach. Theor. Appl. Climatol. 2022, 147, 1015–1031. [Google Scholar] [CrossRef]
- Askari, Q.; Saeed, M.; Younas, I. Heap-Based Optimizer Inspired by Corporate Rank Hierarchy for Global Optimization. Expert Syst. Appl. 2020, 161, 113702. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium Optimizer: A Novel Optimization Algorithm. Knowl.-Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures; Chapman and Hall/CRC: London, UK, 2003; ISBN 0429186169. [Google Scholar]
Ref | Method | Problem | Advantage | Disadvantage |
---|---|---|---|---|
[15] |
|
|
|
|
[16] |
|
|
|
|
[17] |
|
|
|
|
[18] |
|
|
|
|
[19] |
|
|
|
|
# | Dataset | Instances | Features | Positive | Negative |
---|---|---|---|---|---|
1 | yeast-2_vs_4 | 514 | 8 | 51 | 463 |
2 | wisconsin | 683 | 9 | 239 | 444 |
3 | Wdbc | 569 | 31 | 212 | 357 |
4 | Ionsphere | 351 | 34 | 126 | 225 |
5 | glass0 | 214 | 9 | 70 | 144 |
6 | Parkinsons | 195 | 22 | 28 | 147 |
7 | Breast | 277 | 9 | 81 | 196 |
8 | Sonar | 208 | 60 | 97 | 111 |
9 | breastEW | 569 | 30 | 212 | 357 |
10 | Libra(123-others) | 360 | 90 | 72 | 288 |
11 | Vowel(2-others) | 528 | 10 | 48 | 480 |
12 | Ecoli (im-others) | 336 | 7 | 77 | 259 |
13 | Segment (BRICKFACE-others) | 2310 | 19 | 330 | 1980 |
Dataset | Algorithm | ACC | F-Meas | G-Mean |
---|---|---|---|---|
yeast-2_vs_4 | Or | 92.97 | 47.06 | 55.47 |
MRA | 92.97 | 47.06 | 55.47 | |
AOA | 89.84 | NaN | 0 | |
JS | 89.84 | NaN | 0 | |
ALO | 89.84 | NaN | 0 | |
WOA | 92.97 | 47.06 | 55.47 | |
HBO | 89.84 | NaN | 0 | |
EO | 89.84 | NaN | 0 | |
wisconsin | Or | 94.12 | 91.53 | 93.49 |
MRA | 94.59 | 92.26 | 94.18 | |
AOA | 94.82 | 92.47 | 94.16 | |
JS | 92.35 | 88.7 | 90.86 | |
ALO | 94.35 | 91.88 | 93.82 | |
WOA | 94.24 | 91.68 | 93.65 | |
HBO | 95.88 | 94.12 | 95.65 | |
EO | 92.94 | 89.66 | 91.74 | |
Wdbc | Or | 94.37 | 92.86 | 95.08 |
MRA | 95.35 | 94.02 | 95.81 | |
AOA | 94.65 | 93.18 | 95.23 | |
JS | 94.37 | 92.86 | 95.08 | |
ALO | 94.51 | 93.02 | 95.19 | |
WOA | 94.79 | 93.36 | 95.42 | |
HBO | 92.96 | 91.23 | 93.91 | |
EO | 93.66 | 92.04 | 94.5 | |
Ionsphere | Or | 90.8 | 85.19 | 86.14 |
MRA | 90.8 | 85.71 | 87.2 | |
AOA | 88.51 | 81.48 | 83.49 | |
JS | 88.51 | 80.77 | 82.31 | |
ALO | 89.66 | 83.02 | 84.24 | |
WOA | 89.66 | 83.02 | 84.24 | |
HBO | 93.1 | 89.29 | 89.8 | |
EO | 88.51 | 80.77 | 82.31 | |
glass0 | Or | 67.92 | 48.48 | 60.5 |
MRA | 69.81 | 50 | 61.57 | |
AOA | 67.92 | 37.04 | 50.33 | |
JS | 73.58 | 41.67 | 52.7 | |
ALO | 69.81 | 50 | 61.57 | |
WOA | 66.04 | 40 | 53.32 | |
HBO | 69.81 | 50 | 61.57 | |
EO | 69.81 | 50 | 61.57 | |
Parkinsons | Or | 85.42 | 63.16 | 69.72 |
MRA | 85.42 | 66.67 | 74.22 | |
AOA | 85.42 | 63.16 | 69.72 | |
JS | 85.42 | 63.16 | 69.72 | |
ALO | 85.42 | 63.16 | 69.72 | |
WOA | 85.42 | 63.16 | 69.72 | |
HBO | 85.42 | 66.67 | 74.22 | |
EO | 89.58 | 76.19 | 80.51 | |
Breast | Or | 73.91 | 35.71 | 48.45 |
MRA | 78.26 | 51.61 | 61.28 | |
AOA | 72.46 | 42.42 | 55.42 | |
JS | 72.46 | 42.42 | 55.42 | |
ALO | 72.46 | 42.42 | 55.42 | |
WOA | 72.46 | 42.42 | 55.42 | |
HBO | 73.91 | 43.75 | 56.06 | |
EO | 76.81 | 57.89 | 68.66 | |
Sonar | Or | 78.85 | 73.17 | 76.01 |
MRA | 82.69 | 78.05 | 80 | |
AOA | 78.85 | 73.17 | 76.01 | |
JS | 78.85 | 73.17 | 76.01 | |
ALO | 78.85 | 73.17 | 76.01 | |
WOA | 76.92 | 70 | 73.43 | |
HBO | 78.85 | 71.79 | 74.83 | |
EO | 80.77 | 77.27 | 79.35 | |
breastEW | Or | 94.37 | 92.86 | 95.08 |
MRA | 95.77 | 94.55 | 96.23 | |
AOA | 94.37 | 92.86 | 95.08 | |
JS | 94.37 | 92.86 | 95.08 | |
ALO | 92.96 | 91.23 | 93.91 | |
WOA | 95.07 | 93.58 | 95.3 | |
HBO | 95.07 | 93.69 | 95.66 | |
EO | 95.07 | 93.69 | 95.66 | |
Libra(123-others) | Or | 88.89 | 61.54 | 66.67 |
MRA | 90 | 66.67 | 70.71 | |
AOA | 88.89 | 61.54 | 66.67 | |
JS | 88.89 | 61.54 | 66.67 | |
ALO | 88.89 | 61.54 | 66.67 | |
WOA | 90 | 66.67 | 70.71 | |
HBO | 90 | 66.67 | 70.71 | |
EO | 90 | 66.67 | 70.71 | |
Vowel(2-others) | Or | 88.64 | 40 | 62.36 |
MRA | 90.91 | NaN | 0 | |
AOA | 87.12 | 10.53 | 28.14 | |
JS | 90.91 | NaN | 0 | |
ALO | 88.64 | 40 | 62.36 | |
WOA | 88.64 | 40 | 62.36 | |
HBO | 90.91 | NaN | 0 | |
EO | 90.91 | NaN | 0 | |
Ecoli (im-others) | Or | 94.05 | 87.18 | 90.74 |
MRA | 94.05 | 85.71 | 86.6 | |
AOA | 94.05 | 85.71 | 86.6 | |
JS | 92.86 | 84.21 | 88.03 | |
ALO | 94.05 | 85.71 | 86.6 | |
WOA | 94.05 | 85.71 | 86.6 | |
HBO | 94.05 | 85.71 | 86.6 | |
EO | 94.05 | 85.71 | 86.6 | |
Segment (BRICKFACE-others) | Or | 99.83 | 99.39 | 99.4 |
MRA | 99.83 | 99.39 | 99.4 | |
AOA | 99.65 | 98.8 | 99.3 | |
JS | 99.83 | 99.39 | 99.4 | |
ALO | 99.83 | 99.39 | 99.4 | |
WOA | 99.83 | 99.39 | 99.4 | |
HBO | 99.83 | 99.39 | 99.4 | |
EO | 99.65 | 98.8 | 99.3 |
# Dataset | MRA:ALO | MRA:HBO | MRA:EO | |||
---|---|---|---|---|---|---|
Dif | Rank | Dif | Rank | Dif | Rank | |
1 | 3.13 | 11 | 3.13 | 11 | 3.13 | 12 |
2 | 0.24 | 5 | −1.29 | −8 | 1.65 | 8 |
3 | 0.84 | 6 | 2.39 | 10 | 1.69 | 9 |
4 | 1.14 | 8 | −2.3 | −9 | 2.29 | 11 |
5 | 0 | 1 | 0 | 1 | 0 | 1 |
6 | 0 | 1 | 0 | 1 | −4.16 | −13 |
7 | 5.8 | 14 | 4.35 | 14 | 1.45 | 7 |
8 | 3.84 | 12 | 3.84 | 12 | 1.92 | 10 |
9 | 2.81 | 10 | 0.7 | 7 | 0.7 | 6 |
10 | 1.11 | 7 | 0 | 1 | 0 | 1 |
11 | 2.27 | 9 | 0 | 1 | 0 | 1 |
12 | 0 | 1 | 0 | 1 | 0 | 1 |
13 | 0 | 1 | 0 | 1 | 0.18 | 5 |
14 | 4.35 | 13 | 4.35 | 13 | 6.52 | 14 |
T | min{99, 0} = 0 | min{73, 17} = 17 | min{86, 13} = 13 |
# Dataset | MRA:ALO | MRA:HBO | MRA:EO | |||
---|---|---|---|---|---|---|
Dif | Rank | Dif | Rank | Dif | Rank | |
1 | 48.06 | 14 | 48.06 | 14 | 48.06 | 14 |
2 | 0.38 | 4 | −1.86 | −8 | 2.6 | 9 |
3 | 1 | 5 | 2.79 | 9 | 1.98 | 8 |
4 | 2.69 | 6 | −3.58 | −11 | 4.94 | 10 |
5 | 0 | 1 | 0 | 1 | 0 | 1 |
6 | 3.51 | 9 | 0 | 1 | −9.52 | −13 |
7 | 9.19 | 12 | 7.86 | 13 | −6.28 | −12 |
8 | 4.88 | 10 | 6.26 | 12 | 0.78 | 6 |
9 | 3.32 | 7 | 0.86 | 7 | 0.86 | 7 |
10 | 5.13 | 11 | 0 | 1 | 0 | 1 |
11 | −41 | −13 | 0 | 1 | 0 | 1 |
12 | 0 | 1 | 0 | 1 | 0 | 1 |
13 | 0 | 1 | 0 | 1 | 0.59 | 5 |
14 | 3.33 | 8 | 3.33 | 10 | 5.78 | 11 |
T | min{89, 13} = 13 | min{71, 19} = 19 | min{74, 25} = 25 |
# Dataset | MRA:ALO | MRA:HBO | MRA:EO | |||
---|---|---|---|---|---|---|
Dif | Rank | Dif | Rank | Dif | Rank | |
1 | 55.47 | 13 | 55.47 | 14 | 55.47 | 14 |
2 | 0.36 | 4 | −1.47 | −8 | 2.44 | 9 |
3 | 0.62 | 5 | 1.9 | 9 | 1.31 | 8 |
4 | 2.96 | 7 | −2.6 | −10 | 4.89 | 10 |
5 | 0 | 1 | 0 | 1 | 0 | 1 |
6 | 4.5 | 10 | 0 | 1 | −6.29 | −11 |
7 | 5.86 | 12 | 5.22 | 13 | −7.38 | −13 |
8 | 3.99 | 8 | 5.17 | 12 | 0.65 | 7 |
9 | 2.32 | 6 | 0.57 | 7 | 0.57 | 6 |
10 | 4.04 | 9 | 0 | 1 | 0 | 1 |
11 | −62.36 | −14 | 0 | 1 | 0 | 1 |
12 | 0 | 1 | 0 | 1 | 0 | 1 |
13 | 0 | 1 | 0 | 1 | 0.1 | 5 |
14 | 4.74 | 11 | 4.74 | 11 | 6.71 | 12 |
T | min{88, 14} = 14 | min{72, 18} = 18 | min{75, 24} = 24 |
Algorithm | MRA | ALO | EO | |
---|---|---|---|---|
Classifiers performance | ACC | 82.61 | 78.26 | 76.09 |
F_Meas | 83.33 | 80.00 | 77.55 | |
G-Mean | 82.81 | 78.07 | 76.10 | |
Selected features | Data-01 | |||
Data-02 | √ | |||
Data-03 | ||||
Data-04 | √ | √ | ||
Data-05 | √ | √ | ||
Data-06 | √ | √ | ||
Data-07 | ||||
Data-08 | √ | |||
Data-09 | √ | |||
Data-10 | √ | |||
Data-11 | √ | √ | √ | |
Data-12 | √ | |||
Data-13 | √ | √ | √ | |
Data-14 | √ | √ | ||
Data-15 | √ | √ | √ | |
Data-16 | ||||
Data-17 | √ | |||
Data-18 | √ | √ | ||
Data-19 | √ | |||
Data-20 | √ | |||
Data-21 | √ | √ | √ | |
Data-22 | √ | √ | ||
Data-23 | √ | √ | ||
Data-24 | √ | |||
Data-25 | √ | √ | √ | |
Data-26 | √ | √ | ||
Data-27 | √ | |||
Data-28 | √ | √ | √ | |
Data-29 | √ | √ | ||
Data-30 | √ | √ | ||
Data-31 | √ | √ | ||
Data-32 | ||||
Data-33 | ||||
Data-34 | ||||
Data-35 | ||||
Data-36 | √ | √ | √ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Bakrawy, L.M.; Bailek, N.; Abualigah, L.; Urooj, S.; Desuky, A.S. Feature Selection Based on Mud Ring Algorithm for Improving Survival Prediction of Children Undergoing Hematopoietic Stem-Cell Transplantation. Mathematics 2022, 10, 4197. https://doi.org/10.3390/math10224197
El Bakrawy LM, Bailek N, Abualigah L, Urooj S, Desuky AS. Feature Selection Based on Mud Ring Algorithm for Improving Survival Prediction of Children Undergoing Hematopoietic Stem-Cell Transplantation. Mathematics. 2022; 10(22):4197. https://doi.org/10.3390/math10224197
Chicago/Turabian StyleEl Bakrawy, Lamiaa M., Nadjem Bailek, Laith Abualigah, Shabana Urooj, and Abeer S. Desuky. 2022. "Feature Selection Based on Mud Ring Algorithm for Improving Survival Prediction of Children Undergoing Hematopoietic Stem-Cell Transplantation" Mathematics 10, no. 22: 4197. https://doi.org/10.3390/math10224197
APA StyleEl Bakrawy, L. M., Bailek, N., Abualigah, L., Urooj, S., & Desuky, A. S. (2022). Feature Selection Based on Mud Ring Algorithm for Improving Survival Prediction of Children Undergoing Hematopoietic Stem-Cell Transplantation. Mathematics, 10(22), 4197. https://doi.org/10.3390/math10224197